A. Introduction 1. Title: Remedial Action Schemes **2. Number:** PRC-012-2 3. Purpose: To ensure that Remedial Action Schemes (RAS) do not introduce unintentional or unacceptable reliability risks to the Bulk Electric System (BES). # 4. Applicability: #### 4.1. Functional Entities: - 4.1.1. Reliability Coordinator - **4.1.2.** Planning Coordinator - **4.1.3.** RAS-entity the Transmission Owner, Generator Owner, or Distribution Provider that owns all or part of a RAS #### 4.2. Facilities: - **4.2.1.** Remedial Action Schemes (RAS) - **5. Effective Date*:** See the BC Implementation Plan for PRC-012-2. # **B.** Requirements and Measures - R1. Prior to placing a new or functionally modified RAS in service or retiring an existing RAS, each RAS-entity shall provide the information identified in Attachment 1 for review to the Reliability Coordinator(s) where the RAS is located. [Violation Risk Factor: Medium] [Time Horizon: Operations Planning] - **M1.** Acceptable evidence may include, but is not limited to, a copy of the Attachment 1 documentation and the dated communications with the reviewing Reliability Coordinator(s) in accordance with Requirement R1. - R2. Each Reliability Coordinator that receives Attachment 1 information pursuant to Requirement R1 shall, within four full calendar months of receipt or on a mutually agreed upon schedule, perform a review of the RAS in accordance with Attachment 2, and provide written feedback to each RAS-entity. [Violation Risk Factor: Medium] [Time Horizon: Operations Planning] - **M2.** Acceptable evidence may include, but is not limited to, dated reports, checklists, or other documentation detailing the RAS review, and the dated communications with the RAS-entity in accordance with Requirement R2. - R3. Prior to placing a new or functionally modified RAS in service or retiring an existing RAS, each RAS-entity that receives feedback from the reviewing Reliability Coordinator(s) identifying reliability issue(s) shall resolve each issue to obtain approval of the RAS from each reviewing Reliability Coordinator. [Violation Risk Factor: Medium] [Time Horizon: Operations Planning] ^{*} Mandatory BC Effective Date: October 1, 2021 except for R1 Attachment 1, Section II Parts 6(d) and 6(e), R2 Attachment 2, Section I Parts 7(d) and 7(e), and R4: July 1, 2028 - **M3.** Acceptable evidence may include, but is not limited to, dated documentation and communications with the reviewing Reliability Coordinator that no reliability issues were identified during the review or that all identified reliability issues were resolved in accordance with Requirement R3. - **R4.** Each Planning Coordinator, at least once every five full calendar years, shall: [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning] - **4.1.** Perform an evaluation of each RAS within its planning area to determine whether: - **4.1.1.** The RAS mitigates the System condition(s) or Contingency(ies) for which it was designed. - **4.1.2.** The RAS avoids adverse interactions with other RAS, and protection and control systems. - **4.1.3.** For limited impact¹ RAS, the inadvertent operation of the RAS or the failure of the RAS to operate does not cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. - **4.1.4.** Except for limited impact RAS, the possible inadvertent operation of the RAS, resulting from any single RAS component malfunction satisfies all of the following: - **4.1.4.1.** The BES shall remain stable. - **4.1.4.2.** Cascading shall not occur. - **4.1.4.3.** Applicable Facility Ratings shall not be exceeded. - **4.1.4.4.** BES voltages shall be within post-Contingency voltage limits and post-Contingency voltage deviation limits as established by the Transmission Planner and the Planning Coordinator. - **4.1.4.5.** Transient voltage responses shall be within acceptable limits as established by the Transmission Planner and the Planning Coordinator. - **4.1.5.** Except for limited impact RAS, a single component failure in the RAS, when the RAS is intended to operate does not prevent the BES from meeting the same performance requirements (defined in Reliability Standard TPL-001-4 or its successor) as those required for the events and conditions for which the RAS is designed. ¹ A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. - **4.2.** Provide the results of the RAS evaluation including any identified deficiencies to each reviewing Reliability Coordinator and RAS-entity, and each impacted Transmission Planner and Planning Coordinator. - **M4.** Acceptable evidence may include, but is not limited to, dated reports or other documentation of the analyses comprising the evaluation(s) of each RAS and dated communications with the RAS-entity(ies), Transmission Planner(s), Planning Coordinator(s), and the reviewing Reliability Coordinator(s) in accordance with Requirement R4. - **R5.** Each RAS-entity, within 120 full calendar days of a RAS operation or a failure of its RAS to operate when expected, or on a mutually agreed upon schedule with its reviewing Reliability Coordinator(s), shall: [Violation Risk Factor: Medium] [Time Horizon: Operations Planning] - **5.1.** Participate in analyzing the RAS operational performance to determine whether: - **5.1.1.** The System events and/or conditions appropriately triggered the RAS. - **5.1.2.** The RAS responded as designed. - **5.1.3.** The RAS was effective in mitigating BES performance issues it was designed to address. - **5.1.4.** The RAS operation resulted in any unintended or adverse BES response. - **5.2.** Provide the results of RAS operational performance analysis that identified any deficiencies to its reviewing Reliability Coordinator(s). - **M5.** Acceptable evidence may include, but is not limited to, dated documentation detailing the results of the RAS operational performance analysis and dated communications with participating RAS-entities and the reviewing Reliability Coordinator(s) in accordance with Requirement R5. - **R6.** Each RAS-entity shall participate in developing a Corrective Action Plan (CAP) and submit the CAP to its reviewing Reliability Coordinator(s) within six full calendar months of: [Violation Risk Factor: Medium] [Time Horizon: Operations Planning, Longterm Planning] - Being notified of a deficiency in its RAS pursuant to Requirement R4, or - Notifying the Reliability Coordinator of a deficiency pursuant to Requirement R5, Part 5.2, or - Identifying a deficiency in its RAS pursuant to Requirement R8. - **M6.** Acceptable evidence may include, but is not limited to, a dated CAP and dated communications among each reviewing Reliability Coordinator and each RAS-entity in accordance with Requirement R6. - **R7.** Each RAS-entity shall, for each of its CAPs developed pursuant to Requirement R6: [Violation Risk Factor: Medium] [Time Horizon: Operations Planning, Long-term Planning] - **7.1.** Implement the CAP. - **7.2.** Update the CAP if actions or timetables change. - **7.3.** Notify each reviewing Reliability Coordinator if CAP actions or timetables change and when the CAP is completed. - M7. Acceptable evidence may include, but is not limited to, dated documentation such as CAPs, project or work management program records, settings sheets, work orders, maintenance records, and communication with the reviewing Reliability Coordinator(s) that documents the implementation, updating, or completion of a CAP in accordance with Requirement R7. - **R8.** Each RAS-entity shall participate in performing a functional test of each of its RAS to verify the overall RAS performance and the proper operation of non-Protection System components: [Violation Risk Factor: High] [Time Horizon: Long-term Planning] - At least once every six full calendar years for all RAS not designated as limited impact, or - At least once every twelve full calendar years for all RAS designated as limited impact - **M8.** Acceptable evidence may include, but is not limited to, dated documentation detailing the RAS operational performance analysis for a correct RAS segment or an end-to-end operation (Measure M5 documentation), or dated documentation demonstrating that a functional test of each RAS segment or an end-to-end test was performed in accordance with Requirement R8. - **R9.** Each Reliability Coordinator shall update a RAS database containing, at a minimum, the information in Attachment 3 at least once every twelve full calendar months. [Violation Risk Factor: Lower] [Time Horizon: Operations Planning] - **M9.** Acceptable evidence may include, but is not limited to, dated spreadsheets, database reports, or other documentation demonstrating a RAS database was updated in accordance with Requirement R9. # C. Compliance - 1. Compliance Monitoring Process - 1.1. Compliance Enforcement Authority: The British Columbia Utilities Commission. #### 1.2. Evidence Retention: The following evidence retention period(s) identify the period of time an entity is required to retain specific evidence to demonstrate compliance. For instances where the evidence retention period specified below is shorter than the time since the last audit, the Compliance Enforcement Authority may ask an entity to provide other evidence to show that it was compliant for the full-time period since the last audit. The applicable entity shall keep data or evidence to show compliance as identified below unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation. The RAS-entity (Transmission Owner, Generator Owner, and Distribution Provider) shall each keep data or evidence to show compliance with Requirements R1, R3,
R5, R6, R7, and R8, and Measures M1, M3, M5, M6, M7, and M8 since the last audit, unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation. The Reliability Coordinator shall each keep data or evidence to show compliance with Requirements R2 and R9, and Measures M2 and M9 since the last audit, unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation. The Planning Coordinator shall each keep data or evidence to show compliance with Requirement R4 and Measure M4 since the last audit, unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation. If a RAS-entity (Transmission Owner, Generator Owner or Distribution Provider), Reliability Coordinator, or Planning Coordinator is found non-compliant, it shall keep information related to the non-compliance until mitigation is completed and approved, or for the time specified above, whichever is longer. The Compliance Enforcement Authority shall keep the last audit records and all requested and submitted subsequent audit records. # **Violation Severity Levels** | R # | Violation Severity Levels | | | | |-----|--|--|--|--| | | Lower VSL | Moderate VSL | High VSL | Severe VSL | | R1. | N/A | N/A | N/A | The RAS-entity failed to provide the information identified in Attachment 1 to each Reliability Coordinator prior to placing a new or functionally modified RAS in service or retiring an existing RAS in accordance with Requirement R1. | | R2. | The reviewing Reliability Coordinator performed the review and provided the written feedback in accordance with Requirement R2, but was late by less than or equal to 30 full calendar days. | The reviewing Reliability Coordinator performed the review and provided the written feedback in accordance with Requirement R2, but was late by more than 30 full calendar days but less than or equal to 60 full calendar days. | The reviewing Reliability Coordinator performed the review and provided the written feedback in accordance with Requirement R2, but was late by more than 60 full calendar days but less than or equal to 90 full calendar days. | The reviewing Reliability Coordinator performed the review and provided the written feedback in accordance with Requirement R2, but was late by more than 90 full calendar days. OR The reviewing Reliability Coordinator failed to perform the review or provide feedback in accordance with Requirement R2. | | R # | Violation Severity Levels | | | | |-----|---|---|---|--| | | Lower VSL | Moderate VSL | High VSL | Severe VSL | | R3. | N/A | N/A | N/A | The RAS-entity failed to resolve identified reliability issue(s) to obtain approval from each reviewing Reliability Coordinator prior to placing a new or functionally modified RAS in service or retiring an existing RAS in accordance with Requirement R3. | | R4. | The Planning Coordinator performed the evaluation in accordance with Requirement R4, but was late by less than or equal to 30 full calendar days. | The Planning Coordinator performed the evaluation in accordance with Requirement R4, but was late by more than 30 full calendar days but less than or equal to 60 full calendar days. | The Planning Coordinator performed the evaluation in accordance with Requirement R4, but was late by more than 60 full calendar days but less than or equal to 90 full calendar days. OR The Planning Coordinator performed the evaluation in accordance with Requirement R4, but failed to evaluate one of the Parts 4.1.1 through 4.1.5. | The Planning Coordinator performed the evaluation in accordance with Requirement R4, but was late by more than 90 full calendar days. OR The Planning Coordinator performed the evaluation in accordance with Requirement R4, but failed to evaluate two or more of the Parts 4.1.1 through 4.1.5. OR | | R # | Violation Severity Levels | | | | |-----|---|---|---|--| | | Lower VSL | Moderate VSL | High VSL | Severe VSL | | | | | | The Planning Coordinator performed the evaluation in accordance with Requirement R4, but failed to provide the results to one or more of the receiving entities listed in Part 4.2. OR The Planning Coordinator failed to perform the evaluation in accordance with Requirement R4. | | R5. | The RAS-entity performed the analysis in accordance with Requirement R5, but was late by less than or equal to 10 full calendar days. | The RAS-entity performed the analysis in accordance with Requirement R5, but was late by more than 10 full calendar days but less than or equal to 20 full calendar days. | The RAS-entity performed the analysis in accordance with Requirement R5, but was late by more than 20 full calendar days but less than or equal to 30 full calendar days. OR The RAS-entity performed the analysis in accordance with Requirement R5, but failed to address one of the Parts 5.1.1 through 5.1.4. | The RAS-entity performed the analysis in accordance with Requirement R5, but was late by more than 30 full calendar days. OR The RAS-entity performed the analysis in accordance with Requirement R5, but failed to address two or more of the Parts 5.1.1 through 5.1.4. | | R # | Violation Severity Levels | | | | |-----|--|--|--|--| | | Lower VSL | Moderate VSL | High VSL | Severe VSL | | | | | | OR | | | | | | The RAS-entity performed the analysis in accordance with Requirement R5, but failed to provide the results (Part 5.2) to one or more of the reviewing Reliability Coordinator(s). OR The RAS-entity failed to perform the analysis in accordance with Requirement R5. | | R6. | The RAS-entity developed a Corrective Action Plan and submitted it to its reviewing Reliability Coordinator(s) in accordance with Requirement R6, but was late by less than or equal to 10 full calendar days. | The RAS-entity developed a Corrective Action Plan and submitted it to its reviewing Reliability Coordinator(s) in accordance with Requirement R6, but was late by more than 10 full calendar days but less than or equal to 20 full calendar days. | The RAS-entity developed a Corrective Action Plan and submitted it to its reviewing Reliability Coordinator(s) in
accordance with Requirement R6, but was late by more than 20 full calendar days but less than or equal to 30 full calendar days. | The RAS-entity developed a Corrective Action Plan and submitted it to its reviewing Reliability Coordinator(s) in accordance with Requirement R6, but was late by more than 30 full calendar days. OR The RAS-entity developed a Corrective Action Plan but failed to submit it to one or | | R # | Violation Severity Levels | | | | |-----|--|--|--|--| | | Lower VSL | Moderate VSL | High VSL | Severe VSL | | | | | | more of its reviewing Reliability Coordinator(s) in accordance with Requirement R6. OR The RAS-entity failed to develop a Corrective Action Plan in accordance with | | | | | | Requirement R6. | | R7. | The RAS-entity implemented a CAP in accordance with Requirement R7, Part 7.1, but failed to update the CAP (Part 7.2) if actions or timetables changed, or failed to notify (Part 7.3) each of the reviewing Reliability Coordinator(s) of the updated CAP or completion of the CAP. | N/A | N/A | The RAS-entity failed to implement a CAP in accordance with Requirement R7, Part 7.1. | | R8. | The RAS-entity performed
the functional test for a RAS
as specified in Requirement
R8, but was late by less than | The RAS-entity performed
the functional test for a RAS
as specified in Requirement
R8, but was late by more
than 30 full calendar days | The RAS-entity performed
the functional test for a RAS
as specified in Requirement
R8, but was late by more
than 60 full calendar days | The RAS-entity performed the functional test for a RAS as specified in Requirement R8, but was late by more than 90 full calendar days. | | R # | Violation Severity Levels | | | | |-----|--|--|--|--| | | Lower VSL | Moderate VSL | High VSL | Severe VSL | | | or equal to 30 full calendar days. | but less than or equal to 60 full calendar days. | but less than or equal to 90 full calendar days. | OR The RAS-entity failed to perform the functional test for a RAS as specified in Requirement R8. | | R9. | The Reliability Coordinator updated the RAS database in accordance with Requirement R9, but was late by less than or equal to 30 full calendar days. | The Reliability Coordinator updated the RAS database in accordance with Requirement R9, but was late by more than 30 full calendar days but less than or equal to 60 full calendar days. | The Reliability Coordinator updated the RAS database in accordance with Requirement R9, but was late by more than 60 full calendar days but less than or equal to 90 full calendar days. | The Reliability Coordinator updated the RAS database in accordance with Requirement R9 but was late by more than 90 full calendar days. OR The Reliability Coordinator failed to update the RAS database in accordance with Requirement R9. | # **D.** Regional Variances None. # **E.** Associated Documents # **Version History** | Version | Date | Action | Change Tracking | |---------|-----------------------|--|-----------------| | 0 | February 8, 2005 | Adopted by the Board of Trustees | | | 0 | March 16, 2007 | Identified by Commission as "fill-in-the-blank" with no action taken on the standard | | | 1 | November 13,
2014 | Adopted by the Board of Trustees | | | 1 | November 19,
2015 | Accepted by Commission for informational purposes only | | | 2 | May 5, 2016 | Adopted by Board of Trustees | | | 2 | September 20,
2017 | FERC Order No. 837 issued approving PRC-012-2 | | # Attachment 1 Supporting Documentation for RAS Review The following checklist identifies important Remedial Action Scheme (RAS) information for each new or functionally modified² RAS that the RAS-entity must document and provide to the reviewing Reliability Coordinator(s) (RC). If an item on this list does not apply to a specific RAS, a response of "Not Applicable" for that item is appropriate. When RAS are submitted for functional modification review and approval, only the proposed modifications to that RAS require review; however, the RAS-entity must provide a summary of the existing functionality. The RC may request additional information on any aspect of the RAS as well as any reliability issue related to the RAS. Additional entities (without decision authority) may be part of the RAS review process at the request of the RC. #### I. General - 1. Information such as maps, one-line drawings, substation and schematic drawings that identify the physical and electrical location of the RAS and related facilities. - 2. Functionality of new RAS or proposed functional modifications to existing RAS and documentation of the pre- and post-modified functionality of the RAS. - 3. The Corrective Action Plan (CAP) if RAS modifications are proposed in a CAP. - 4. Data to populate the RAS database: - a. RAS name. - b. Each RAS-entity and contact information. - c. Expected or actual in-service date; most recent RC-approval date (Requirement R3); most recent evaluation date (Requirement R4); and date of retirement, if applicable. - d. System performance issue or reason for installing the RAS (e.g., thermal overload, angular instability, poor oscillation damping, voltage instability, under- or overvoltage, or slow voltage recovery). - e. Description of the Contingencies or System conditions for which the RAS was designed (i.e., initiating conditions). - f. Action(s) to be taken by the RAS. - g. Identification of limited impact³ RAS. - h. Any additional explanation relevant to high-level understanding of the RAS. - Changes to System conditions or contingencies monitored by the RAS - Changes to the actions the RAS is designed to initiate - Changes to RAS hardware beyond in-kind replacement; i.e., match the original functionality of existing components - Changes to RAS logic beyond correcting existing errors - Changes to redundancy levels; i.e., addition or removal ² Functionally modified: Any modification to a RAS consisting of any of the following: ³ A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. # II. Functional Description and Transmission Planning Information - 1. Contingencies and System conditions that the RAS is intended to remedy. - 2. The action(s) to be taken by the RAS in response to disturbance conditions. - 3. A summary of technical studies, if applicable, demonstrating that the proposed RAS actions satisfy System performance objectives for the scope of System events and conditions that the RAS is intended to remedy. The technical studies summary shall also include information such as the study year(s), System conditions, and Contingencies analyzed on which the RAS design is based, and the date those technical studies were performed. - 4. Information regarding any future System plans that will impact the RAS. - 5. RAS-entity proposal and justification for limited impact designation, if applicable. - 6. Documentation describing the System performance resulting from the possible inadvertent operation of the RAS, except for limited impact RAS, caused by any single RAS component malfunction. Single component malfunctions in a RAS not determined to be limited impact must satisfy all of the following: - The BES shall remain stable. - b. Cascading shall not occur. - c. Applicable Facility Ratings shall not be exceeded. - d. BES voltages shall be within post-Contingency voltage limits and post-Contingency voltage deviation limits as established by the Transmission Planner and the Planning Coordinator. - e. Transient voltage responses shall be within acceptable limits as established by the Transmission Planner and the Planning Coordinator. - 7. An evaluation indicating that the RAS settings and operation avoid adverse interactions with other RAS, and protection and control systems. - 8. Identification of other affected RCs. #### III. Implementation - 1. Documentation describing the applicable equipment used for detection, dc supply, communications, transfer trip, logic processing, control actions, and monitoring. - 2. Information on detection logic and settings/parameters that control the operation of the RAS. - Documentation showing that any multifunction device used to perform RAS function(s), in addition to other functions such as protective relaying or SCADA, does not
compromise the reliability of the RAS when the device is not in service or is being maintained. - 4. Documentation describing the System performance resulting from a single component failure in the RAS, except for limited impact RAS, when the RAS is intended to operate. A single component failure in a RAS not determined to be limited impact must not prevent the BES from meeting the same performance requirements (defined in Reliability Standard TPL-001-4 or its successor) as those required for the events and conditions for which the RAS is designed. The documentation should describe or illustrate how the design achieves this objective. - 5. Documentation describing the functional testing process. #### IV. RAS Retirement The following checklist identifies RAS information that the RAS-entity shall document and provide to each reviewing RC. - 1. Information necessary to ensure that the RC is able to understand the physical and electrical location of the RAS and related facilities. - 2. A summary of applicable technical studies and technical justifications upon which the decision to retire the RAS is based. - 3. Anticipated date of RAS retirement. # Attachment 2 Reliability Coordinator RAS Review Checklist The following checklist identifies reliability-related considerations for the Reliability Coordinator (RC) to review and verify for each new or functionally modified⁴ Remedial Action Scheme (RAS). The RC review is not limited to the checklist items and the RC may request additional information on any aspect of the RAS as well as any reliability issue related to the RAS. If a checklist item is not relevant to a particular RAS, it should be noted as "Not Applicable." If reliability considerations are identified during the review, the considerations and the proposed resolutions should be documented with the remaining applicable Attachment 2 items. # I. Design - 1. The RAS actions satisfy performance objectives for the scope of events and conditions that the RAS is intended to mitigate. - 2. The designed timing of RAS operation(s) is appropriate to its BES performance objectives. - The RAS arming conditions, if applicable, are appropriate to its System performance objectives. - 4. The RAS avoids adverse interactions with other RAS, and protection and control systems. - 5. The effects of RAS incorrect operation, including inadvertent operation and failure to operate, have been identified. - 6. Determination whether or not the RAS is limited impact. A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. - 7. Except for limited impact RAS as determined by the RC, the possible inadvertent operation of the RAS resulting from any single RAS component malfunction satisfies all of the following: - a. The BES shall remain stable. - b. Cascading shall not occur. - c. Applicable Facility Ratings shall not be exceeded. - Changes to System conditions or contingencies monitored by the RAS - Changes to the actions the RAS is designed to initiate - Changes to RAS hardware beyond in-kind replacement; i.e., match the original functionality of existing components - Changes to RAS logic beyond correcting existing errors - Changes to redundancy levels; i.e., addition or removal ⁴ Functionally modified: Any modification to a RAS consisting of any of the following: ⁵ A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. - d. BES voltages shall be within post-Contingency voltage limits and post-Contingency voltage deviation limits as established by the Transmission Planner and the Planning Coordinator. - e. Transient voltage responses shall be within acceptable limits as established by the Transmission Planner and the Planning Coordinator. - 8. The effects of future BES modifications on the design and operation of the RAS have been identified, where applicable. # II. Implementation - 1. The implementation of RAS logic appropriately correlates desired actions (outputs) with events and conditions (inputs). - 2. Except for limited impact RAS as determined by the RC, a single component failure in a RAS does not prevent the BES from meeting the same performance requirements as those required for the events and conditions for which the RAS is designed. - 3. The RAS design facilitates periodic testing and maintenance. - 4. The mechanism or procedure by which the RAS is armed is clearly described, and is appropriate for reliable arming and operation of the RAS for the conditions and events for which it is designed to operate. #### III. RAS Retirement RAS retirement reviews should assure that there is adequate justification for why a RAS is no longer needed. # Attachment 3 Database Information - 1. RAS name. - 2. Each RAS-entity and contact information. - 3. Expected or actual in-service date; most recent RC-approval date (Requirement R3); most recent evaluation date (Requirement R4); and date of retirement, if applicable. - 4. System performance issue or reason for installing the RAS (e.g., thermal overload, angular instability, poor oscillation damping, voltage instability, under- or over-voltage, or slow voltage recovery). - 5. Description of the Contingencies or System conditions for which the RAS was designed (i.e., initiating conditions). - 6. Action(s) to be taken by the RAS. - 7. Identification of limited impact⁶ RAS. - 8. Any additional explanation relevant to high-level understanding of the RAS. ⁶ A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. #### **Technical Justification** ## 4.1.1 Reliability Coordinator The Reliability Coordinator (RC) is the best-suited functional entity to perform the Remedial Action Scheme (RAS) review because the RC has the widest area reliability perspective of all functional entities and an awareness of reliability issues in neighboring RC Areas. The Wide Area purview better facilitates the evaluation of interactions among separate RAS, as well as interactions among RAS and other protection and control systems. The selection of the RC also minimizes the possibility of a conflict of interest that could exist because of business relationships among the RAS-entity, Planning Coordinator, Transmission Planner, or other entities involved in the planning or implementation of a RAS. The RC is also less likely to be a stakeholder in any given RAS and can therefore maintain objective independence. # **4.1.2 Planning Coordinator** The Planning Coordinator (PC) is the best-suited functional entity to perform the RAS evaluation to verify the continued effectiveness and coordination of the RAS, its inadvertent operation performance, and the performance for a single component failure. The items that must be addressed in the evaluations include: 1) RAS mitigation of the System condition(s) or event(s) for which it was designed; 2) RAS avoidance of adverse interactions with other RAS and with protection and control systems; 3) the impact of inadvertent operation; and 4) the impact of a single component failure. The evaluation of these items involves modeling and studying the interconnected transmission system, similar to the planning analyses performed by PCs. # 4.1.3 RAS-entity The RAS-entity is any Transmission Owner, Generator Owner, or Distribution Provider that owns all or part of a RAS. If all of the RAS (RAS components) have a single owner, then that RAS-entity has sole responsibility for all the activities assigned within the standard to the RAS-entity. If the RAS (RAS components) have more than one owner, then each separate RAS component owner is a RAS-entity and is obligated to participate in various activities identified by the Requirements. The standard does not stipulate particular compliance methods. RAS-entities have the option of collaborating to fulfill their responsibilities for each applicable requirement. Such collaboration and coordination may promote efficiency in achieving the reliability objectives of the requirements; however, the individual RAS-entity must be able to demonstrate its participation for compliance. As an example, the individual RAS-entities could collaborate to produce and submit a single, coordinated Attachment 1 to the reviewing RC pursuant to Requirement R1 to initiate the RAS review process. #### Limited impact RAS are unique and customized assemblages of protection and control equipment that vary in complexity and impact on the reliability of the BES. These differences in RAS design, action, and risk to the BES are identified and verified within the construct of Requirements R1-R4 of PRC-012-2. The reviewing RC has the authority to designate a RAS as limited impact if the RAS cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. The reviewing RC makes the final determination as to whether a RAS qualifies for the limited impact designation based upon the studies and other information provided with the Attachment 1 submittal by the RAS-entity. The standard recognizes the Local Area Protection Scheme (LAPS) classification in WECC (Western Electricity Coordinating Council) and the Type III classification in NPCC (Northeast Power Coordinating Council) as initially appropriate for limited impact designation. The following information describing the aforementioned WECC and NPCC RAS is excerpted from the respective regional documentation⁷. The
drafting team notes that the information below represents the state of the WECC and NPCC regional processes at the time of this standard development and is subject to change before the effective date of PRC-012-2. # **WECC: Local Area Protection Scheme (LAPS)** A Remedial Action Scheme (RAS) whose failure to operate would NOT result in any of the following: - Violations of TPL-001-WECC-RBP System Performance RBP, - Maximum load loss ≥ 300 MW, - Maximum generation loss ≥ 1000 MW. # **NPCC: Type III** An SPS whose misoperation or failure to operate results in no **significant adverse impact** outside the **local area**. The following terms are also defined by NPCC to assess the impact of the SPS for classification: **Significant adverse impact** – With due regard for the maximum operating capability of the affected systems, one or more of the following conditions arising from faults or disturbances, shall be deemed as having significant adverse impact: - a. system instability; - b. unacceptable system dynamic response or equipment tripping; - c. voltage levels in violation of applicable emergency limits; - d. loadings on transmission facilities in violation of applicable emergency limits; - e. unacceptable loss of load. **Local area** – An electrically confined or radial portion of the system. The geographic size and number of system elements contained will vary based on system characteristics. A local area may be relatively large geographically with relatively few buses in a sparse system, or be ⁷ WECC Procedure to Submit a RAS for Assessment Information Required to Assess the Reliability of a RAS Guideline, Revised 10/28/2013 | NPCC Regional Reliability Reference Directory # 7, Special Protection Systems, Version 2, 3/31/2015 relatively small geographically with a relatively large number of buses in a densely networked system. A RAS implemented prior to the effective date of PRC-012-2 that has been through the regional review processes of WECC or NPCC and classified as either a Local Area Protection Scheme (LAPS) in WECC or a Type III in NPCC, is recognized as a limited impact RAS upon the effective date of PRC-012-2 for the purposes of this standard and is subject to all applicable requirements. To propose an existing RAS (a RAS implemented prior to the effective date of PRC-012-2) be designated as limited impact by the reviewing RC, the RAS-entity must prepare and submit the appropriate Attachment 1 information that includes the technical justification (evaluations) documenting that the System can meet the performance requirements (specified in Requirement R4, Parts 4.1.4 and 4.1.5) resulting from a single RAS component malfunction or failure, respectively. There is nothing that precludes a RAS-entity from working with the reviewing RC during the implementation period of PRC-012-2, in anticipation of the standard becoming enforceable. However, even if the reviewing RC determines the RAS qualifies as limited impact, the designation is not relevant until the standard becomes effective. Until then, the existing regional processes remain in effect as well as the existing RAS classifications or lack thereof. An example of a scheme that could be recognized as a limited impact RAS is a load shedding or generation rejection scheme used to mitigate the overload of a BES transmission line. The inadvertent operation of such a scheme would cause the loss of either a certain amount of generation or load. The evaluation by the RAS-entity should demonstrate that the loss of this amount of generation or load, without the associated contingency for RAS operation actually occurring, is acceptable and not detrimental to the reliability of BES; e.g., in terms of frequency and voltage stability. The failure of that scheme to operate when intended could potentially lead to the overloading of a transmission line beyond its acceptable rating. The RAS-entity would need to demonstrate that this overload, while in excess of the applicable Facility Rating, is not detrimental to the BES outside the contained area (predetermined by studies) affected by the contingency. Other examples of limited impact RAS include: - A scheme used to protect BES equipment from damage caused by overvoltage through generation rejection or equipment tripping. - A centrally-controlled undervoltage load shedding scheme used to protect a contained area (predetermined by studies) of the BES against voltage collapse. - A scheme used to trip a generating unit following certain BES Contingencies to prevent the unit from going out of synch with the System; where, if the RAS fails to operate and the unit pulls out of synchronism, the resulting apparent impedance swings do not result in the tripping of any Transmission System Elements other than the generating unit and its directly connected Facilities. # Requirement R1 Each RAS is unique and its action(s) can have a significant impact on the reliability and integrity of the Bulk Electric System (BES); therefore, a review of a proposed new RAS or an existing RAS proposed for functional modification, or retirement (removal from service) must be completed prior to implementation. Functional modifications consists of any of the following: - Changes to System conditions or Contingencies monitored by the RAS - Changes to the actions the RAS is designed to initiate - Changes to RAS hardware beyond in-kind replacement; i.e., match the original functionality of existing components - Changes to RAS logic beyond correcting existing errors - Changes to redundancy levels; i.e., addition or removal An example indicating the limits of an in-kind replacement of a RAS component is the replacement of one relay (or other device) with a relay (or other device) that uses similar functions. For instance, if a RAS included a CO-11 relay which was replaced by an IAC-53 relay, that would be an in-kind replacement. If the CO-11 relay were replaced by a microprocessor SEL-451 relay that used only the same functions as the original CO-11 relay, that would also be an in-kind replacement; however, if the SEL-451 relay was used to add new logic to what the CO-11 relay had provided, then the replacement relay would be a functional modification. Changes to RAS pickup levels that require no other scheme changes are not considered a functional modification. For example, System conditions require a RAS to be armed when the combined flow on two lines exceeds 500 MW. If a periodic evaluation pursuant to Requirement R4, or other assessment, indicates that the arming level should be reduced to 450 MW without requiring any other RAS changes that would not be a functional modification. Similarly, if a RAS is designed to shed load to reduce loading on a particular line below 1000 amps, then a change in the load shedding trigger from 1000 amps to 1100 amps would not be a functional modification. Another example illustrates a case where a System change may result in a RAS functional change. Assume that a generation center is connected to a load center through two transmission lines. The lines are not rated to accommodate full plant output if one line is out of service, so a RAS monitors the status of both lines and trips or ramps down the generation to a safe level following loss of either line. Later, one of the lines is tapped to serve additional load. The System that the RAS impacts now includes three lines, loss of any of which is likely to still require generation reduction. The modified RAS will need to monitor all three lines (add two line terminal status inputs to the RAS) and the logic to recognize the specific line outages would change, while the generation reduction (RAS output) requirement may or may not change, depending on which line is out of service. These required RAS changes would be a functional modification. Any functional modification to a RAS will need to be reviewed and approved through the process described in Requirements R1, R2, and R3. The need for such functional modifications may be identified in several ways including but not limited to the Planning evaluations pursuant to R4, incorrect operations pursuant to R5, a test failure pursuant to R8, or Planning assessments related to future additions or modifications of other facilities. See Item 4a in the Implementation Section of Attachment 1 in the Supplemental Material section for typical RAS components for which a failure may be considered. The RC has the discretion to make the final determination regarding which components should be regarded as RAS components during its review. To facilitate a review that promotes reliability, the RAS-entity(ies) must provide the reviewer with sufficient details of the RAS design, function, and operation. This data and supporting documentation are identified in Attachment 1 of this standard, and Requirement R1 mandates that the RAS-entity(ies) provide them to the reviewing Reliability Coordinator (RC). The RC that coordinates the area where the RAS is located is responsible for the review. In cases where a RAS crosses multiple RC Area boundaries, each affected RC is responsible for conducting either individual reviews or a coordinated review. Requirement R1 does not specify how far in advance of implementation the RAS-entity(ies) must provide Attachment 1 data to the reviewing RC. The information will need to be submitted early enough to allow RC review in the allotted time pursuant to Requirement R2, including resolution of any reliability issues that might be identified, in order to obtain approval of the reviewing RC. Expeditious submittal of this information is in the interest of each RAS-entity to effect a timely implementation. # Requirement R2 Requirement R2 mandates that the RC perform reviews of all proposed new RAS and existing RAS proposed for functional modification, or retirement (removal from service) in its RC Area. RAS are unique and customized assemblages of protection and control equipment. As such, they have a potential to
introduce reliability risks to the BES, if not carefully planned, designed, and installed. A RAS may be installed to address a reliability issue, or achieve an economic or operational advantage, and could introduce reliability risks that might not be apparent to a RAS-entity(ies). An independent review by a multi-disciplinary panel of subject matter experts with planning, operations, protection, telecommunications, and equipment expertise is an effective means of identifying risks and recommending RAS modifications when necessary. The RC is the functional entity best suited to perform the RAS reviews because it has the widest area reliability perspective of all functional entities and an awareness of reliability issues in neighboring RC Areas. This Wide Area purview facilitates the evaluation of interactions among separate RAS as well as interactions among the RAS and other protection and control systems. The selection of the RC also minimizes the possibility of a "conflict of interest" that could exist because of business relationships among the RAS-entity, Planning Coordinator (PC), Transmission Planner (TP), or other entities that are likely to be involved in the planning or implementation of a RAS. The RC may request assistance in RAS reviews from other parties such as the PC(s) or regional technical groups (e.g., Regional Entities); however, the RC retains responsibility for compliance with the requirement. It is recognized that the RC does not possesses more information or ability than anticipated by their functional registration as designated by NERC. The NERC Functional Model is a guideline for the development of standards and their applicability and does not contain compliance requirements. If Reliability Standards address functions that are not described in the model, the Reliability Standard requirements take precedence over the Functional Model. For further reference, please see the Introduction section of NERC's Reliability Functional Model, Version 5, November 2009. Attachment 2 of this standard is a checklist for assisting the RC in identifying design and implementation aspects of a RAS, and for facilitating consistent reviews of each RAS submitted for review. The time frame of four full calendar months is consistent with current utility practice; however, flexibility is provided by allowing the parties to negotiate a different schedule for the review. Note, an RC may need to include this task in its reliability plan(s) for the NERC Region(s) in which it is located. ## Requirement R3 Requirement R3 mandates that each RAS-entity resolve all reliability issues (pertaining to its RAS) identified during the RAS review by the reviewing Reliability Coordinators. Examples of reliability issues include a lack of dependability, security, or coordination. RC approval of a RAS is considered to be obtained when the reviewing RC's feedback to each RAS-entity indicates that either no reliability issues were identified during the review or all identified reliability issues were resolved to the RC's satisfaction. Dependability is a component of reliability that is the measure of certainty of a device to operate when required. If a RAS is installed to meet performance requirements of NERC Reliability Standards, a failure of the RAS to operate when intended would put the System at risk of violating NERC Reliability Standards if specified Contingency(ies) or System conditions occur. This risk is mitigated by designing the RAS so that it will accomplish the intended purpose while experiencing a single RAS component failure. This is often accomplished through redundancy. Other strategies for providing dependability include "over-tripping" load or generation, or alternative automatic backup schemes. Security is a component of reliability that is the measure of certainty of a device to not operate inadvertently. False or inadvertent operation of a RAS results in taking a programmed action without the appropriate arming conditions, occurrence of specified Contingency(ies), or System conditions expected to trigger the RAS action. Typical RAS actions include shedding load or generation or re-configuring the System. Such actions, if inadvertently taken, are undesirable and may put the System in a less secure state. Worst case impacts from inadvertent operation often occur if all programmed RAS actions occur. If the System performance still satisfies PRC-012-2 Requirement R4, Part 4.3, no additional mitigation is required. Security enhancements to the RAS design, such as voting schemes, are acceptable mitigations against inadvertent operations. Any reliability issue identified during the review must be resolved before implementing the RAS to avoid placing the System at unacceptable risk. The RAS-entity or the reviewing RC(s) may have alternative ideas or methods available to resolve the issue(s). In either case, the concern needs to be resolved in deference to reliability, and the RC has the final decision. A specific time period for the RAS-entity to respond to the RC(s) review is not necessary because an expeditious response is in the interest of each RAS-entity to effect a timely implementation. A specific time period for the RC to respond to the RAS-entity following the RAS review is also not necessary because the RC will be aware of (1) any reliability issues associated with the RAS not being in service and (2) the RAS-entity's schedule to implement the RAS to address those reliability issues. Since the RC is the ultimate arbiter of BES operating reliability, resolving reliability issues is a priority for the RC and serves as an incentive to expeditiously respond to the RAS-entity. ## Requirement R4 Requirement R4 mandates that an evaluation of each RAS be performed at least once every five full calendar years. The purpose of a periodic RAS evaluation is to verify the continued effectiveness and coordination of the RAS, as well as to verify that requirements for BES performance following inadvertent RAS operation and single component failure continue to be satisfied. A periodic evaluation is required because changes in System topology or operating conditions may change the effectiveness of a RAS or the way it interacts with and impacts the BES. A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. Limited impact RAS are not subject to the RAS single component malfunction and failure tests of Parts 4.1.4 and 4.1.5, respectively. Requiring a limited impact RAS to meet these tests would add complexity to the design with minimal benefit to BES reliability. A RAS implemented after the effective date of this standard can only be designated as limited impact by the reviewing RC(s). A RAS implemented prior to the effective date of PRC-012-2 that has been through the regional review processes of WECC or NPCC and is classified as either a Local Area Protection Scheme (LAPS) in WECC or a Type III in NPCC is recognized as a limited impact RAS upon the effective date of PRC-012-2 for the purposes of this standard and is subject to all applicable requirements. Requirement R4 also clarifies that the RAS single component failure and inadvertent operation tests do not apply to RAS which are determined to be limited impact. Requiring a limited impact RAS to meet the single component failure and inadvertent operation tests would just add complexity to the design with little or no improvement in the reliability of the BES. For existing RAS, the initial performance of Requirement R4 must be completed within five full calendar years of the effective date of PRC-012-2. For new or functionally modified RAS, the initial performance of the requirement must be completed within five full calendar years of the RAS approval date by the reviewing RC(s). Five full calendar years was selected as the maximum time frame between evaluations based on the time frames for similar requirements in Reliability Standards PRC-006, PRC-010, and PRC-014. The RAS evaluation can be performed sooner if it is determined that material changes to System topology or System operating conditions could potentially impact the effectiveness or coordination of the RAS. System changes also have the potential to alter the reliability impact of limited impact RAS on the BES. Requirement 4, Part 4.1.3 explicitly requires the periodic evaluation of limited impact RAS to verify the limited impact designation remains applicable. The periodic RAS evaluation will typically lead to one of the following outcomes: 1) affirmation that the existing RAS is effective; 2) identification of changes needed to the existing RAS; or, 3) justification for RAS retirement. The items required to be addressed in the evaluations (Requirement R4, Parts 4.1.1 through 4.1.5) are planning analyses that may involve modeling of the interconnected transmission system to assess BES performance. The PC is the functional entity best suited to perform the analyses because they have a wide-area planning perspective. To promote reliability, the PC is required to provide the results of the evaluation to each impacted Transmission Planner and Planning Coordinator, in addition to each reviewing RC and RAS-entity. In cases where a RAS crosses PC boundaries, each affected PC is responsible for conducting either individual evaluations or participating in a coordinated evaluation. The intent of Requirement R4, Part 4.1.4 is to verify that the possible inadvertent operation of the RAS (other than limited impact RAS), caused by the malfunction of a single component of the RAS, meet the same System performance requirements as those required for the Contingency(ies) or System conditions for which it is designed. If the RAS is designed to meet one of the planning events (P0-P7) in TPL-001-4, the possible inadvertent operation of the
RAS must meet the same performance requirements listed in the standard for that planning event. The requirement clarifies that the inadvertent operation to be considered is only that caused by the malfunction of a single RAS component. This allows features to be designed into the RAS to improve security, such that inadvertent operation due to malfunction of a single component is prevented; otherwise, the RAS inadvertent operation must satisfy Requirement R4, Part 4.1.4. The intent of Requirement R4, Part 4.1.4 is also to verify that the possible inadvertent operation of the RAS (other than limited impact RAS) installed for an extreme event in TPL-001-4 or for some other Contingency or System conditions not defined in TPL-001-4 (therefore without performance requirements), meet the minimum System performance requirements of Category P7 in Table 1 of NERC Reliability Standard TPL-001-4. However, instead of referring to the TPL standard, the requirement lists the System performance requirements that a potential inadvertent operation must satisfy. The performance requirements listed (Requirement R4, Parts 4.1.4.1 - 4.1.4.5) are the ones that are common to all planning events (P0-P7) listed in TPL-001-4. With reference to Requirement 4, Part 4.1.4, note that the only differences in performance requirements among the TPL (PO-P7) events (not common to all of them) concern Non-Consequential Load Loss and interruption of Firm Transmission Service. It is not necessary for Requirement R4, Part 4.1.4 to specify performance requirements related to these areas because a RAS is only allowed to drop non-consequential load or interrupt Firm Transmission Service if that action is allowed for the Contingency for which it is designed. Therefore, the inadvertent operation should automatically meet Non-Consequential Load Loss or interrupting Firm Transmission Service performance requirements for the Contingency(ies) for which it was designed. The intent of Requirement R4, Part 4.1.5 is to verify that a single component failure in a RAS, other than limited impact RAS, when the RAS is intended to operate, does not prevent the BES from meeting the same performance requirements (defined in Reliability Standard TPL-001-4 or its successor) as those required for the events and conditions for which the RAS is designed. This analysis is needed to ensure that changing System conditions do not result in the single component failure requirement not being met. The following is an example of a single component failure causing the System to fail to meet the performance requirements for the P1 event for which the RAS was installed. Consider the instance where a three-phase Fault (P1 event) results in a generating plant becoming unstable (a violation of the System performance requirements of TPL-001-4). To resolve this, a RAS is installed to trip a single generating unit which allows the remaining units at the plant to remain stable. If failure of a single component (e.g., relay) in the RAS results in the RAS failing to operate for the P1 event, the generating plant would become unstable (failing to meet the System performance requirements of TPL-001-4 for a P1 event). Requirement R4, Part 4.1.5 does not mandate that all RAS have redundant components. For example: - Consider the instance where a RAS is installed to mitigate an extreme event in TPL-001 There are no System performance requirements for extreme events; therefore, the RAS does not need redundancy to meet the same performance requirements as those required for the events and conditions for which the RAS was designed. - Consider a RAS that arms more load or generation than necessary such that failure of the RAS to drop a portion of load or generation due to that single component failure will still result in satisfactory System performance, as long as tripping the total armed amount of load or generation does not cause other adverse impacts to reliability. The scope of the periodic evaluation does not include a new review of the physical implementation of the RAS, as this was confirmed by the RC during the initial review and verified by subsequent functional testing. However, it is possible that a RAS design which previously satisfied requirements for inadvertent RAS operation and single component failure by means other than component redundancy may fail to satisfy these requirements at a later time, and must be evaluated with respect to the current System. For example, if the actions of a particular RAS include tripping load, load growth could occur over time that impacts the amount of load to be tripped. These changes could result in tripping too much load upon inadvertent operation and result in violations of Facility Ratings. Alternatively, the RAS might be designed to trip more load than necessary (i.e., "over trip") in order to satisfy single component failure requirements. System changes could result in too little load being tripped and unacceptable BES performance if one of the loads failed to trip. #### Requirement R5 The correct operation of a RAS is important to maintain the reliability and integrity of the BES. Any incorrect operation of a RAS indicates the RAS effectiveness and/or coordination may have been compromised. Therefore, all operations of a RAS and failures of a RAS to operate when expected must be analyzed to verify that the RAS operation was consistent with its intended functionality and design. A RAS operational performance analysis is intended to: (1) verify RAS operation is consistent with implemented design; or (2) identify RAS performance deficiencies that manifested in the incorrect RAS operation or failure of RAS to operate when expected. The 120 full calendar day time frame for the completion of RAS operational performance analysis aligns with the time frame established in Requirement R1 from PRC-004-4 regarding the investigation of a Protection System Misoperation; however, flexibility is provided by allowing the parties to negotiate a different schedule for the analysis. To promote reliability, the RAS-entity(s) is required to provide the results of RAS operational performance analyses to its reviewing RC(s) if the analyses revealed a deficiency. The RAS-entity(ies) may need to collaborate with its associated Transmission Planner to comprehensively analyze RAS operational performance. This is because a RAS operational performance analysis involves verifying that the RAS operation was triggered correctly (Part 5.1.1), responded as designed (Part 5.1.2), and that the resulting BES response (Parts 5.1.3 and 5.1.4) was consistent with the intended functionality and design of the RAS. Ideally, when there is more than one RAS-entity for a RAS, the RAS-entities would collaborate to conduct and submit a single, coordinated operational performance analysis. # Requirement R6 RAS deficiencies potentially pose a reliability risk to the BES. RAS deficiencies may be identified in the periodic RAS evaluation conducted by the PC in Requirement R4, in the operational analysis conducted by the RAS-entity in Requirement R5, or in the functional test performed by the RAS-entity(ies) in Requirement R8. To mitigate potential reliability risks, Requirement R6 mandates that each RAS-entity participate in developing a CAP that establishes the mitigation actions and timetable necessary to address the deficiency. The RAS-entity(ies) that owns the RAS components, is responsible for the RAS equipment, and is in the best position to develop the timelines and perform the necessary work to correct RAS deficiencies. If necessary, the RAS-entity(ies) may request assistance with development of the CAP from other parties such as its Transmission Planner or Planning Coordinator; however, the RAS-entity has the responsibility for compliance with this requirement. A CAP may require functional changes be made to a RAS. In this case, Attachment 1 information must be submitted to the reviewing RC(s), an RC review must be performed to obtain RC approval before the RAS-entity can place RAS modifications in service, per Requirements R1, R2, and R3. Depending on the complexity of the issues, development of a CAP may require study, engineering or consulting work. A timeframe of six full calendar months is allotted to allow enough time for RAS-entity collaboration on the CAP development, while ensuring that deficiencies are addressed in a reasonable time. Ideally, when there is more than one RAS-entity for a RAS, the RAS-entities would collaborate to develop and submit a single, coordinated CAP. A RAS deficiency may require the RC or Transmission Operator to impose operating restrictions so the System can operate in a reliable way until the RAS deficiency is resolved. The possibility of such operating restrictions will incent the RAS-entity to resolve the issue as quickly as possible. The following are example situations of when a CAP is required: - A determination after a RAS operation/non-operation investigation that the RAS did not meet performance expectations or did not operate as designed. - Periodic planning assessment reveals RAS changes are necessary to correct performance or coordination issues. - Equipment failures. - Functional testing identifies that a RAS is not operating as designed. #### Requirement R7 Requirement R7 mandates that each RAS-entity implement its CAP developed in Requirement R6 which mitigates the deficiencies identified in Requirements R4, R5, or R8. By definition, a CAP is: "A list of actions and an associated timetable for implementation to remedy a specific problem." A CAP can be modified if necessary to account for adjustments to the actions or scheduled timetable of activities. If the CAP is changed, the RAS-entity must notify the reviewing Reliability Coordinator(s). The RAS-entity must also notify the Reliability Coordinator(s) when the CAP has been completed. The implementation of a properly developed CAP ensures that RAS deficiencies are mitigated in a timely
manner. A RAS deficiency may require the RC or Transmission Operator to impose operating restrictions so the System can operate in a reliable way until the CAP is completed. The possibility of such operating restrictions will incent the RAS-entity to complete the CAP as quickly as possible. ## Requirement R8 The reliability objective of Requirement R8 is to test the non-Protection System components of a RAS (controllers such as programmable logic controllers (PLCs)) and to verify the overall performance of the RAS through functional testing. Functional tests validate RAS operation by ensuring System states are detected and processed, and that actions taken by the controls are correct and occur within the expected time using the in-service settings and logic. Functional testing is aimed at assuring overall RAS performance and not the component focused testing contained in the PRC-005 maintenance standard. Since the functional test operates the RAS under controlled conditions with known System states and expected results, testing and analysis can be performed with minimum impact to the BES and should align with expected results. The RAS-entity is in the best position to determine the testing procedure and schedule due to their overall knowledge of the RAS design, installation, and functionality. Periodic testing provides the RAS-entity assurance that latent failures may be identified and also promotes identification of changes in the System that may have introduced latent failures. The six and twelve full calendar year functional testing intervals are greater than the annual or bi-annual periodic testing performed in some NERC Regions. However, these intervals are a balance between the resources required to perform the testing and the potential reliability impacts to the BES created by undiscovered latent failures that could cause an incorrect operation of the RAS. Longer test intervals for limited impact RAS are acceptable because incorrect operations or failures to operate present a low reliability risk to the Bulk Power System. Functional testing is not synonymous with end-to-end testing. End-to-end testing is an acceptable method but may not be feasible for many RAS. When end-to-end testing is not possible, a RAS-entity may use a segmented functional testing approach. The segments can be tested individually negating the need for complex maintenance schedules. In addition, actual RAS operation(s) can be used to fulfill the functional testing requirement. If a RAS does not operate in its entirety during a System event or System conditions do not allow an end-to-end scheme test, then the segmented approach should be used to fulfill this Requirement. Functional testing includes the testing of all RAS inputs used for detection, arming, operating, and data collection. Functional testing, by default operates the processing logic and infrastructure of a RAS, but focuses on the RAS inputs as well as the actions initiated by RAS outputs to address the System condition(s) for which the RAS is designed. All segments and components of a RAS must be tested or have proven operations within the applicable maximum test interval to demonstrate compliance with the Requirement. As an example of segment testing, consider a RAS controller implemented using a PLC that receives System data, such as loading or line status, from distributed devices. These distributed devices could include meters, protective relays, or other PLCs. In this example RAS, a line protective relay is used to provide an analog metering quantity to the RAS control PLC. A functional test would verify that the System data is received from the protective relay by the PLC, processed by the PLC, and that PLC outputs are appropriate. There is no need to verify the protective relay's ability to measure the power system quantities, as this is a requirement for Protection Systems used as RAS in PRC-005, Table 1-1, Component Type – Protective Relay. Rather the functional test is focused on the use of the protective relay data at the PLC, including the communications data path from relay to PLC if this data is essential for proper RAS operation. Additionally, if the control signal back to the protective relay is also critical to the proper functioning of this example RAS, then that path is also verified up to the protective relay. This example describes a test for one segment of a RAS which verifies RAS action, verifies PLC control logic, and verifies RAS communications. IEEE C37.233, "IEEE Guide for Power System Protection Testing," 2009 section 8 (particularly 8.3-8.5), provides an overview of functional testing. The following opens section 8.3: Proper implementation requires a well-defined and coordinated test plan for performance evaluation of the overall system during agreed maintenance intervals. The maintenance test plan, also referred to as functional system testing, should include inputs, outputs, communication, logic, and throughput timing tests. The functional tests are generally not component-level testing, rather overall system testing. Some of the input tests may need to be done ahead of overall system testing to the extent that the tests affect the overall performance. The test coordinator or coordinators need to have full knowledge of the intent of the scheme, isolation points, simulation scenarios, and restoration to normal procedures. The concept is to validate the overall performance of the scheme, including the logic where applicable, to validate the overall throughput times against system modeling for different types of Contingencies, and to verify scheme performance as well as the inputs and outputs. If a RAS passes a functional test, it is not necessary to provide that specific information to the RC because that is the expected result and requires no further action. If a segment of a RAS fails a functional test, the status of that degraded RAS is required to be reported (in Real-time) to the Transmission Operator via PRC-001, Requirement R6, then to the RC via TOP-001-3, Requirement R8. See Phase 2 of Project 2007-06 for the mapping document from PRC-001 to other standards regarding notification of RC by TOP if a deficiency is found during testing. Consequently, it is not necessary to include a similar requirement in this standard. The initial test interval begins on the effective date of the standard pursuant to the implementation plan. Subsequently, the maximum allowable interval between functional tests is six full calendar years for RAS that are not designated as limited impact RAS and twelve full calendar years for RAS that are designated as limited impact RAS. The interval between tests begins on the date of the most recent successful test for each individual segment or end-to-end test. A successful test of one segment only resets the test interval clock for that segment. A RAS-entity may choose to count a correct RAS operation as a qualifying functional test for those RAS segments which operate. If a System event causes a correct, but partial RAS operation, separate functional tests of the segments that did not operate are still required within the maximum test interval that started on the date of the previous successful test of those (non-operating) segments in order to be compliant with Requirement R8. #### Requirement R9 The RAS database required to be maintained by the RC in Requirement R9 ensures information regarding existing RAS is available. Attachment 3 contains the minimum information that is required to be included about each RAS listed in the database. Additional information can be requested by the RC. The database enables the RC to provide other entities high-level information on existing RAS that could potentially impact the operational and/or planning activities of that entity. The information provided is sufficient for an entity with a reliability need to evaluate whether the RAS can impact its System. For example, a RAS performing generation rejection to mitigate an overload on a transmission line may cause a power flow change within an adjacent entity area. This entity should be able to evaluate the risk that a RAS poses to its System from the high-level information provided in the RAS database. The RAS database does not need to list detailed settings or modeling information, but the description of the System performance issues, System conditions, and the intended corrective actions must be included. If additional details about the RAS operation are required, the entity may obtain the contact information of the RAS-entity from the RC. # **Process Flow Diagram** The diagram below depicts the process flow of the PRC-012-2 requirements. # Technical Justifications for Attachment 1 Content Supporting Documentation for RAS Review To perform an adequate review of the expected reliability implications of a Remedial Action Scheme (RAS), it is necessary for the RAS-entity(ies) to provide a detailed list of information describing the RAS to the reviewing RC. If there are multiple RAS-entities for a single RAS, information will be needed from all RAS-entities. Ideally, in such cases, a single RAS-entity will take the lead to compile all the data identified into a single Attachment 1. The necessary data ranges from a general overview of the RAS to summarized results of transmission planning studies, to information about hardware used to implement the RAS. Coordination between the RAS and other RAS and protection and control systems will be examined for possible adverse interactions. This review can include wide-ranging electrical design issues involving the specific hardware, logic, telecommunications, and other relevant equipment and controls that make up the RAS. #### Attachment 1 The following checklist identifies important RAS information for each new or functionally modified⁸ RAS that the RAS-entity shall document and provide to the RC for review pursuant to Requirement R1. When a RAS has been previously reviewed, only the
proposed modifications to that RAS require review; however, it will be helpful to each reviewing RC if the RAS-entity provides a summary of the existing RAS functionality. ## I. General - 1. Information such as maps, one-line drawings, substation and schematic drawings that identify the physical and electrical location of the RAS and related facilities. - Provide a description of the RAS to give an overall understanding of the functionality and a map showing the location of the RAS. Identify other protection and control systems requiring coordination with the RAS. See RAS Design below for additional information. - Provide a single-line drawing(s) showing all sites involved. The drawing(s) should provide sufficient information to allow the RC review team to assess design reliability, and should include information such as the bus arrangement, circuit breakers, the associated switches, etc. For each site, indicate whether detection, logic, action, or a combination of these is present. - 2. Functionality of new RAS or proposed functional modifications to existing RAS and documentation of the pre- and post-modified functionality of the RAS. - Changes to System conditions or contingencies monitored by the RAS - Changes to the actions the RAS is designed to initiate - Changes to RAS hardware beyond in-kind replacement; i.e., match the original functionality of existing components - Changes to RAS logic beyond correcting existing errors - Changes to redundancy levels; i.e., addition or removal ⁸ Functionally modified: Any modification to a RAS consisting of any of the following: 3. The Corrective Action Plan (CAP) if RAS modifications are proposed in a CAP. [Reference NERC Reliability Standard PRC-012-2, Requirements R5 and R7] Provide a description of any functional modifications to a RAS that are part of a CAP that are proposed to address performance deficiency(ies) identified in the periodic evaluation pursuant to Requirement R4, the analysis of an actual RAS operation pursuant to Requirement R5, or functional test failure pursuant to Requirement R8. A copy of the most recent CAP must be submitted in addition to the other data specified in Attachment 1. - 4. Initial data to populate the RAS database. - a. RAS name. - b. Each RAS-entity and contact information. - c. Expected or actual in-service date; most recent (Requirement R3) RC-approval date; most recent five full calendar year (Requirement R4) evaluation date; and, date of retirement, if applicable. - d. System performance issue or reason for installing the RAS (*e.g.*, thermal overload, angular instability, poor oscillation damping, voltage instability, under-/over-voltage, slow voltage recovery). - e. Description of the Contingencies or System conditions for which the RAS was designed (initiating conditions). - f. Corrective action taken by the RAS. - g. Identification of limited impact⁹ RAS. - h. Any additional explanation relevant to high level understanding of the RAS. Note: This is the same information as is identified in Attachment 3. Supplying the data at this point in the review process ensures a more complete review and minimizes any administrative burden on the reviewing RC(s). ## II. Functional Description and Transmission Planning Information - Contingencies and System conditions that the RAS is intended to remedy. [Reference NERC Reliability Standards PRC-012, R1.2 and PRC-013, R1.1] - a. The System conditions that would result if no RAS action occurred should be identified. - Include a description of the System conditions that should arm the RAS so as to be ready to take action upon subsequent occurrence of the critical System Contingencies or other operating conditions when RAS action is intended to occur. If no arming conditions are required, this should also be stated. ⁹ A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. - c. Event-based RAS are triggered by specific Contingencies that initiate mitigating action. Condition-based RAS may also be initiated by specific Contingencies, but specific Contingencies are not always required. These triggering Contingencies and/or conditions should be identified. - 2. The actions to be taken by the RAS in response to disturbance conditions. [Reference NERC Reliability Standards PRC-012, R1.2 and PRC-013, R1.2] - Mitigating actions are designed to result in acceptable System performance. These actions should be identified, including any time constraints and/or "backup" mitigating measures that may be required in case of a single RAS component failure. - 3. A summary of technical studies, if applicable, demonstrating that the proposed RAS actions satisfy System performance objectives for the scope of System events and conditions that the RAS is intended to remedy. The technical studies summary shall also include information such as the study year(s), System conditions, and Contingencies analyzed on which the RAS design is based, and the date those technical studies were performed. [Reference NEC Reliability Standard PRC-014, R3.2] - Review the scheme purpose and impact to ensure it is (still) necessary, serves the intended purposes, and meets current performance requirements. While copies of the full, detailed studies may not be necessary, any abbreviated descriptions of the studies must be detailed enough to allow the reviewing RC(s) to be convinced of the need for the scheme and the results of RAS-related operations. - 4. Information regarding any future System plans that will impact the RAS. [Reference NERC Reliability Standard PRC-014, R3.2] - The RC's other responsibilities under the NERC Reliability Standards focus on the Operating Horizon, rather than the Planning Horizon. As such, the RC is less likely to be aware of any longer range plans that may have an impact on the proposed RAS. Such knowledge of future Plans is helpful to provide perspective on the capabilities of the RAS. - 5. RAS-entity proposal and justification for limited impact designation, if applicable. - A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. A RAS implemented prior to the effective date of PRC-012-2 that has been through the regional review processes of WECC or NPCC and is classified as either a Local Area Protection Scheme (LAPS) in WECC or a Type 3 in NPCC is recognized as a limited impact RAS upon the effective date of PRC-012-2 for the purposes of this standard and is subject to all applicable requirements. - 6. Documentation describing the System performance resulting from the possible inadvertent operation of the RAS, except for limited impact RAS, caused by any single RAS component malfunction. Single component malfunctions in a RAS not determined to be limited impact must satisfy all of the following: - [Reference NERC Reliability Standard PRC-012, R1.4] - a. The BES shall remain stable. - b. Cascading shall not occur. - Applicable Facility Ratings shall not be exceeded. - d. BES voltages shall be within post-Contingency voltage limits and post-Contingency voltage deviation limits as established by the Transmission Planner and the Planning Coordinator. - e. Transient voltage responses shall be within acceptable limits as established by the Transmission Planner and the Planning Coordinator. - 7. An evaluation indicating that the RAS settings and operation avoids adverse interactions with other RAS, and protection and control systems. [Reference NERC Reliability Standards PRC-012, R1.5 and PRC-014, R3.4] RAS are complex schemes that may take action such as tripping load or generation or reconfiguring the System. Many RAS depend on sensing specific System configurations to determine whether they need to arm or take actions. An examples of an adverse interaction: A RAS that reconfigures the System also changes the available Fault duty, which can affect distance relay overcurrent ("fault detector") supervision and ground overcurrent protection coordination. 8. Identification of other affected RCs. This information is needed to aid in information exchange among all affected entities and coordination of the RAS with other RAS and protection and control systems. # III. Implementation 1. Documentation describing the applicable equipment used for detection, dc supply, communications, transfer trip, logic processing, control actions, and monitoring. #### Detection Detection and initiating devices, whether for arming or triggering action, should be designed to be secure. Several types of devices have been commonly used as disturbance, condition, or status detectors: - Line open status (event detectors), - Protective relay inputs and outputs (event and parameter detectors), - Transducer and IED (analog) inputs (parameter and response detectors), - Rate of change (parameter and response detectors). #### DC Supply Batteries and charges, or other forms of dc supply for RAS, are commonly also used for Protection Systems. This is acceptable, and maintenance of such supplies is covered by PRC-005. However, redundant RAS, when used, should be supplied from separately protected (fused or breakered) circuits. # Communications: Telecommunications Channels Telecommunications channels used for sending and receiving RAS information between sites and/or transfer trip devices should meet at least the same criteria as other relaying protection communication channels. Discuss performance of any non-deterministic communication systems used (such as Ethernet). The scheme logic should be designed so that loss of the channel, noise, or other channel or equipment failure will not result in a false operation of the scheme. It is highly desirable that
the channel equipment and communications media (power line carrier, microwave, optical fiber, etc.) be owned and maintained by the RAS-entity, or perhaps leased from another entity familiar with the necessary reliability requirements. All channel equipment should be monitored and alarmed to the dispatch center so that timely diagnostic and repair action shall take place upon failure. Publicly switched telephone networks are generally an undesirable option. Communication channels should be well labeled or identified so that the personnel working on the channel can readily identify the proper circuit. Channels between entities should be identified with a common name at all terminals. ## Transfer Trip Transfer trip equipment, when separate from other RAS equipment, should be monitored and labeled similarly to the channel equipment. # **Logic Processing** All RAS require some form of logic processing to determine the action to take when the scheme is triggered. Required actions are always scheme dependent. Different actions may be required at different arming levels or for different Contingencies. Scheme logic may be achievable by something as simple as wiring a few auxiliary relay contacts or by much more complex logic processing. Platforms that have been used reliably and successfully include PLCs in various forms, personal computers (PCs), microprocessor protective relays, remote terminal units (RTUs), and logic processors. Single-function relays have been used historically to implement RAS, but this approach is now less common except for very simple new RAS or minor additions to existing RAS. ## **Control Actions** RAS action devices may include a variety of equipment such as transfer trip, protective relays, and other control devices. These devices receive commands from the logic processing function (perhaps through telecommunication facilities) and initiate RAS actions at the sites where action is required. # Monitoring by SCADA/EMS should include at least - Whether the scheme is in service or out of service. - For RAS that are armed manually, the arming status may be the same as whether the RAS is in service or out of service. - For RAS that are armed automatically, these two states are independent because a RAS that has been placed in service may be armed or unarmed based on whether the automatic arming criteria have been met. - The current operational state of the scheme (available or not). - In cases where the RAS requires single component failure performance; e.g., redundancy, the minimal status indications should be provided separately for each RAS. - The minimum status is generally sufficient for operational purposes; however, where possible it is often useful to provide additional information regarding partial failures or the status of critical components to allow the RAS-entity to more efficiently troubleshoot a reported failure. Whether this capability exists will depend in part on the design and vintage of equipment used in the RAS. While all schemes should provide the minimum level of monitoring, new schemes should be designed with the objective of providing monitoring at least similar to what is provided for microprocessor-based Protection Systems. - 2. Information on detection logic and settings/parameters that control the operation of the RAS. [Reference NERC Reliability Standards PRC-012, R1.2 and PRC-013, R1.3] Several methods to determine line or other equipment status are in common use, often in combination: - a. Auxiliary switch contacts from circuit breakers and disconnect switches (52a/b, 89a/b)—the most common status monitor; "a" contacts exactly emulate actual breaker status, while "b" contacts are opposite to the status of the breaker; - b. Undercurrent detection—a low level indicates an open condition, including at the far end of a line; pickup is typically slightly above the total line-charging current; - c. Breaker trip coil current monitoring—typically used when high-speed RAS response is required, but usually in combination with auxiliary switch contacts and/or other detection because the trip coil current ceases when the breaker opens; and - d. Other detectors such as angle, voltage, power, frequency, rate of change of the aforementioned, out of step, etc. are dependent on specific scheme requirements, but some forms may substitute for or enhance other monitoring described in items 'a', 'b', and 'c' above. Both RAS arming and action triggers often require monitoring of analog quantities such as power, current, and voltage at one or more locations and are set to detect a specific level of the pertinent quantity. These monitors may be relays, meters, transducers, or other devices Documentation showing that any multifunction device used to perform RAS function(s), in addition to other functions such as protective relaying or SCADA, does not compromise the reliability of the RAS when the device is not in service or is being maintained. In this context, a multifunction device (e.g., microprocessor-based relay) is a single component that is used to perform the function of a RAS in addition to protective relaying and/or SCADA simultaneously. It is important that other applications in the multifunction device do not compromise the functionality of the RAS when the device is in service or when it is being maintained. The following list outlines considerations when the RAS function is applied in the same microprocessor-based relay as equipment protection functions: - a. Describe how the multifunction device is applied in the RAS. - b. Show the general arrangement and describe how the multi-function device is labeled in the design and application, so as to identify the RAS and other device functions. - c. Describe the procedures used to isolate the RAS function from other functions in the device. - d. Describe the procedures used when each multifunction device is removed from service and whether coordination with other protection schemes is required. - e. Describe how each multifunction device is tested, both for commissioning and during periodic maintenance testing, with regard to each function of the device. - f. Describe how overall periodic RAS functional and throughput tests are performed if multifunction devices are used for both local protection and RAS. - g. Describe how upgrades to the multifunction device, such as firmware upgrades, are accomplished. How is the RAS function taken into consideration? Other devices that are usually not considered multifunction devices such as auxiliary relays, control switches, and instrument transformers may serve multiple purposes such as protection and RAS. Similar concerns apply for these applications as noted above. 4. Documentation describing the System performance resulting from a single component failure in the RAS, except for limited impact RAS, when the RAS is intended to operate. A single component failure in a RAS not determined to be limited impact must not prevent the BES from meeting the same performance requirements (defined in Reliability Standard TPL-001-4 or its successor) as those required for the events and conditions for which the RAS is designed. The documentation should describe or illustrate how the design achieves this objective. [Reference NERC Reliability Standard PRC-012, R1.3] RAS automatic arming, if applicable, is vital to RAS and System performance and is therefore included in this requirement. Acceptable methods to achieve this objective include, but are not limited to the following: - a. Providing redundancy of RAS components. Typical examples are listed below: - i. Protective or auxiliary relays used by the RAS. - ii. Communications systems necessary for correct operation of the RAS. - iii. Sensing devices used to measure electrical or other quantities used by the RAS. - iv. Station dc supply associated with RAS functions. - v. Control circuitry associated with RAS functions through the trip coil(s) of the circuit breakers or other interrupting devices. - vi. Logic processing devices that accept System inputs from RAS components or other sources, make decisions based on those inputs, or initiate output signals to take remedial actions. - b. Arming more load or generation than necessary such that failure of the RAS to drop a portion of load or generation due to that single component failure will still result in satisfactory System performance, as long as tripping the total armed amount of load or generation does not cause other adverse impacts to reliability. - c. Using alternative automatic actions to back up failures of single RAS components. - d. Manual backup operations, using planned System adjustments such as Transmission configuration changes and re-dispatch of generation, if such adjustments are executable within the time duration applicable to the Facility Ratings. - 5. Documentation describing the functional testing process. ### IV. RAS Retirement The following checklist identifies important RAS information for each existing RAS to be retired that the RAS-entity shall document and provide to the Reliability Coordinator for review pursuant to Requirement R1. - 1. Information necessary to ensure that the Reliability Coordinator is able to understand the physical and electrical location of the RAS and related facilities. - 2. A summary of technical studies and technical justifications, if applicable, upon which the decision to retire the RAS is based. - 3. Anticipated date of RAS retirement. While the documentation necessary to evaluate RAS removals is not as extensive as for new or functionally modified RAS, it is still vital that, when the RAS is no longer available, System performance will still meet the appropriate (usually TPL) requirements for the Contingencies or System conditions that the RAS had been installed to remediate. ## **Technical Justification for Attachment 2 Content** # Reliability Coordinator RAS Review Checklist Attachment 2 is a checklist provided to facilitate consistent reviews
continent-wide for new or functionally modified RAS prior to the RAS installation. The checklist is meant to assist the RC in identifying reliability-related considerations relevant to various aspects of RAS design and implementation. ### **Technical Justifications for Attachment 3 Content** #### **Database Information** Attachment 3 contains the minimum information that the RC must consolidate into its database for each RAS in its area. - 1. RAS name. - The name used to identify the RAS. - 2. Each RAS-entity and contact information. - A reliable phone number or email address should be included to contact each RAS-entity if more information is needed. - 3. Expected or actual in-service date; most recent (Requirement R3) RC-approval date; most recent five full calendar year (Requirement R4) evaluation date; and, date of retirement, if applicable. - Specify each applicable date. - 4. System performance issue or reason for installing the RAS (e.g., thermal overload, angular instability, poor oscillation damping, voltage instability, under-/over-voltage, slow voltage recovery). - A short description of the reason for installing the RAS is sufficient, as long as the main System issues addressed by the RAS can be identified by someone with a reliability need. - 5. Description of the Contingencies or System conditions for which the RAS was designed (initiating conditions). - A high level summary of the conditions/Contingencies is expected. Not all combinations of conditions are required to be listed. - 6. Corrective action taken by the RAS. - A short description of the actions should be given. For schemes shedding load or generation, the maximum amount of megawatts should be included. - 7. Identification of limited impact¹⁰ RAS. - Specify whether or not the RAS is designated as limited impact. - 8. Any additional explanation relevant to high-level understanding of the RAS. - If deemed necessary, any additional information can be included in this section, but is not mandatory. ¹⁰ A RAS designated as limited impact cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. #### **Rationale** Rationale for Requirement R1: Each Remedial Action Scheme (RAS) is unique and its action(s) can have a significant impact on the reliability and integrity of the Bulk Electric System (BES). Therefore, a review of a proposed new RAS or an existing RAS proposed for functional modification or retirement; i.e., removal from service must be completed prior to implementation or retirement. Functional modifications consist of any of the following: - Changes to System conditions or Contingencies monitored by the RAS - Changes to the actions the RAS is designed to initiate - Changes to RAS hardware beyond in-kind replacement; i.e., match the original functionality of existing components - Changes to RAS logic beyond correcting existing errors - Changes to redundancy levels; i.e., addition or removal To facilitate a review that promotes reliability, the RAS-entity must provide the reviewer with sufficient details of the RAS design, function, and operation. This data and supporting documentation are identified in Attachment 1 of this standard, and Requirement R1 mandates that the RAS-entity provide them to the reviewing Reliability Coordinator (RC). The RC (reviewing RC) that coordinates the area where the RAS is located is responsible for the review. Ideally, when there is more than one RAS-entity for a RAS, the RAS-entities would collaborate and submit a single, coordinated Attachment 1 to the reviewing RC. In cases where a RAS crosses RC Area boundaries, each affected RC is responsible for conducting either individual reviews or participating in a coordinated review. Rationale for Requirement R2: The RC is the functional entity best suited to perform the RAS review because it has the widest area operational and reliability perspective of all functional entities and an awareness of reliability issues in any neighboring RC Area. This Wide Area purview facilitates the evaluation of interactions among separate RAS as well as interactions among RAS and other protection and control systems. Review by the RC also minimizes the possibility of a conflict of interest that could exist because of business relationships among the RAS-entity, Planning Coordinator (PC), Transmission Planner (TP), or other entities that are likely to be involved in the planning or implementation of a RAS. The RC is not expected to possess more information or ability than anticipated by their functional registration as designated by NERC. The RC may request assistance to perform RAS reviews from other parties such as the PC or regional technical groups; however, the RC will retain the responsibility for compliance with this requirement. Attachment 2 of this standard is a checklist the RC can use to identify design and implementation aspects of RAS and facilitate consistent reviews for each submitted RAS. The time frame of four full calendar months is consistent with current utility and regional practice; however, flexibility is provided by allowing the RC(s) and RAS-entity(ies) to negotiate a mutually agreed upon schedule for the review. Note: An RC may need to include this task in its reliability plan(s) for the NERC Regions(s) in which it is located. **Rationale for Requirement R3:** The RC review is intended to identify reliability issues that must be resolved before the RAS can be put in service. Examples of reliability issues include a lack of dependability, security, or coordination. A specific time period for the RAS-entity to respond to the reviewing RC following identification of any reliability issue(s) is not necessary because the RAS-entity wants to expedite the timely approval and subsequent implementation of the RAS. A specific time period for the RC to respond to the RAS-entity following the RAS review is also not necessary because the RC will be aware of (1) any reliability issues associated with the RAS not being in service and (2) the RAS-entity's schedule to implement the RAS to address those reliability issues. Since the RC is the ultimate arbiter of BES operating reliability, resolving reliability issues is a priority for the RC and serves as an incentive to expeditiously respond to the RAS-entity. Rationale for Requirement R4: Requirement R4 mandates that an evaluation of each RAS be performed at least once every five full calendar years. The purpose of the periodic RAS evaluation is to verify the continued effectiveness and coordination of the RAS, as well as to verify that, if a RAS single component malfunction or single component failure were to occur, the requirements for BES performance would continue to be satisfied. A periodic evaluation is required because changes in System topology or operating conditions may change the effectiveness of a RAS or the way it impacts the BES. RAS are unique and customized assemblages of protection and control equipment that vary in complexity and impact on the reliability of the BES. In recognition of these differences, RAS can be designated by the reviewing RC(s) as limited impact. A limited impact RAS cannot, by inadvertent operation or failure to operate, cause or contribute to BES Cascading, uncontrolled separation, angular instability, voltage instability, voltage collapse, or unacceptably damped oscillations. The "BES" qualifier in the preceding statement modifies all of the conditions that follow it. Limited impact RAS are not subject to the RAS single component malfunction and failure tests of Parts 4.1.4 and 4.1.5, respectively. Requiring a limited impact RAS to meet these tests would add complexity to the design with minimal benefit to BES reliability. See the Supplemental Material for more on the limited impact designation. The standard recognizes the Local Area Protection Scheme (LAPS) classification in WECC (Western Electricity Coordinating Council) and the Type III classification in NPCC (Northeast Power Coordinating Council) as initially appropriate for limited impact designation. A RAS implemented prior to the effective date of PRC-012-2 that has been through the regional review processes of WECC or NPCC and is classified as either a Local Area Protection Scheme (LAPS) in WECC or a Type III in NPCC is recognized as a limited impact RAS upon the effective date of PRC-012-2 for the purposes of this standard and is subject to all applicable requirements. For existing RAS, the initial performance of Requirement R4 must be completed within five full calendar years of the effective date of PRC-012-2. For new or functionally modified RAS, the initial performance of the requirement must be completed within five full calendar years of the RAS approval date by the reviewing RC(s). Five full calendar years was selected as the maximum time frame between evaluations based on the time frames for similar requirements in Reliability Standards PRC-006, PRC-010, and PRC-014. The RAS evaluation can be performed sooner if it is determined that material changes to System topology or System operating conditions could potentially impact the effectiveness or coordination of the RAS. System changes also have the potential to alter the reliability impact of limited impact RAS on the BES. Requirement 4, Part 4.1.3 explicitly requires the periodic evaluation of limited impact RAS to verify the limited impact designation remains applicable; the PC can use its discretion as to how this evaluation is performed. The periodic RAS evaluation will typically lead to one of the following outcomes: 1) affirmation that the existing RAS is effective; 2) identification of changes needed to the existing RAS; or, 3) justification for RAS retirement. The items required to be addressed in the evaluations (Requirement R4, Parts 4.1.1 through 4.1.5) are planning analyses that may
involve modeling of the interconnected transmission system to assess BES performance. The Planning Coordinator (PC) is the functional entity best suited to perform this evaluation because they have a wide area planning perspective. To promote reliability, the PC is required to provide the results of the evaluation to each impacted Transmission Planner and Planning Coordinator, in addition to each reviewing RC and RASentity. In cases where a RAS crosses PC boundaries, each affected PC is responsible for conducting either individual evaluations or participating in a coordinated evaluation. The previous version of this standard (PRC-012-1 Requirement 1, R1.4) states "... the inadvertent operation of a RAS shall meet the same performance requirement (TPL-001-0, TPL-002-0, and TPL-003-0) as that required of the Contingency for which it was designed, and not exceed TPL-003-0." Requirement R4 clarifies that the inadvertent operation to be considered would only be that caused by the malfunction of a single RAS component. This allows security features to be designed into the RAS such that inadvertent operation due to a single component malfunction is prevented. Otherwise, consistent with PRC-012-1 Requirement 1, R1.4, the RAS should be designed so that its whole or partial inadvertent operation due to a single component malfunction satisfies the System performance requirements for the same Contingency for which the RAS was designed. If the RAS was installed for an extreme event in TPL-001-4 or for some other Contingency or System condition not defined in TPL-001-4 (therefore without performance requirements), its inadvertent operation still must meet some minimum System performance requirements. However, instead of referring to the TPL-001-4, Requirement R4 lists the System performance requirements that the inadvertent operation must satisfy. The performance requirements listed (Parts 4.1.4.1 - 4.1.4.5) are the ones that are common to all planning events P0-P7 listed in TPL-001-4. Rationale for Requirement R5: The correct operation of a RAS is important for maintaining the reliability and integrity of the BES. Any incorrect operation of a RAS indicates that the RAS effectiveness and/or coordination has been compromised. Therefore, all operations of a RAS and failures of a RAS to operate when expected must be analyzed to verify that the RAS operation was consistent with its intended functionality and design. A RAS operational performance analysis is intended to: 1) verify RAS operation was consistent with the implemented design; or 2) identify RAS performance deficiencies that manifested in the incorrect RAS operation or failure of RAS to operate when expected. The 120 full calendar day time frame for the completion of RAS operational performance analysis aligns with the time frame established in Requirement R1 from PRC-004-4 regarding the investigation of a Protection System Misoperation. To promote reliability, each RAS-entity is required to provide the results of RAS operational performance analyses that identified any deficiencies to its reviewing RC(s). RAS-entities may need to collaborate with their associated Transmission Planner to comprehensively analyze RAS operational performance. This is because a RAS operational performance analysis involves verifying that the RAS operation was triggered correctly (Part 5.1.1), responded as designed (Part 5.1.2), and that the resulting BES response (Parts 5.1.3 and 5.1.4) was consistent with the intended functionality and design of the RAS. Ideally, when there is more than one RAS-entity for a RAS, the RAS-entities would collaborate to conduct and submit a single, coordinated operational performance analysis. Rationale for Requirement R6: Deficiencies identified in the periodic RAS evaluation conducted by the PC pursuant to Requirement R4, in the operational performance analysis conducted by the RAS-entity pursuant to Requirement R5, or in the functional test performed by the RAS-entity pursuant to Requirement R8, potentially pose a reliability risk to the BES. To mitigate these potential reliability risks, Requirement R6 mandates that each RAS-entity develop a Corrective Action Plan (CAP) to address the identified deficiency. The CAP contains the mitigation actions and associated timetable necessary to remedy the specific deficiency. The RAS-entity may request assistance with CAP development from other parties such as its Transmission Planner or Planning Coordinator; however, the RAS-entity has the responsibility for compliance with this requirement. If the CAP requires that a functional change be made to a RAS, the RAS-entity will need to submit information identified in Attachment 1 to the reviewing RC(s) prior to placing RAS modifications in service per Requirement R1. Depending on the complexity of the identified deficiency(ies), development of a CAP may require studies, and other engineering or consulting work. A maximum time frame of six full calendar months is specified for RAS-entity collaboration on the CAP development. Ideally, when there is more than one RAS-entity for a RAS, the RAS-entities would collaborate to develop and submit a single, coordinated CAP. Rationale for Requirement R7: Requirement R7 mandates each RAS-entity implement a CAP (developed in Requirement R6) that mitigates the deficiencies identified in Requirements R4, R5, or R8. By definition, a CAP is: "A list of actions and an associated timetable for implementation to remedy a specific problem." The implementation of a properly developed CAP ensures that RAS deficiencies are mitigated in a timely manner. Each reviewing Reliability Coordinator must be notified if CAP actions or timetables change, and when the CAP is completed. Rationale for Requirement R8: Due to the wide variety of RAS designs and implementations, and the potential for impacting BES reliability, it is important that periodic functional testing of a RAS be performed. A functional test provides an overall confirmation of the RAS to operate as designed and verifies the proper operation of the non-Protection System (control) components of a RAS that are not addressed in PRC-005. Protection System components that are part of a RAS are maintained in accordance with PRC-005. The six or twelve full calendar year test interval, which begins on the effective date of the standard pursuant to the PRC-012-2 implementation plan, is a balance between the resources required to perform the testing and the potential reliability impacts to the BES created by undiscovered latent failures that could cause an incorrect operation of the RAS. Extending to longer intervals increases the reliability risk to the BES posed by an undiscovered latent failure that could cause an incorrect operation or failure of the RAS. The RAS-entity is in the best position to determine the testing procedure and schedule due to its overall knowledge of the RAS design, installation, and functionality. Functional testing may be accomplished with end-to-end testing or a segmented approach. For segmented testing, each segment of a RAS must be tested. Overlapping segments can be tested individually negating the need for complex maintenance schedules and outages. The maximum allowable interval between functional tests is six full calendar years for RAS that are not designated as limited impact RAS and twelve full calendar years for RAS that are designated as limited impact RAS. The interval between tests begins on the date of the most recent successful test for each individual segment or end-to-end test. A successful test of one segment only resets the test interval clock for that segment. A correct operation of a RAS qualifies as a functional test for those RAS segments which operate (documentation for compliance with Requirement R5 Part 5.1). If an event causes a partial operation of a RAS, the segments without an operation will require a separate functional test within the maximum interval with the starting date determined by the previous successful test of the segments that did not operate. Rationale for Requirement R9: The RAS database is a comprehensive record of all RAS existing in a Reliability Coordinator Area. The database enables the RC to provide other entities high-level information on existing RAS that could potentially impact the operational and/or planning activities of that entity. Attachment 3 lists the minimum information required for the RAS database, which includes a summary of the RAS initiating conditions, corrective actions, and System issues being mitigated. This information allows an entity to evaluate the reliability need for requesting more detailed information from the RAS-entities identified in the database contact information. The RC is the appropriate entity to maintain the database because the RC receives the required database information when a new or modified RAS is submitted for review. The twelve full calendar month time frame is aligned with industry practice and allows sufficient time for the RC to collect the appropriate information from RAS-entities and update the RAS database. # **British Columbia Utilities Commission (BCUC)** Implementation Plan for PRC-012-2 # **Requested Approval** - PRC-012-2 Remedial Action Schemes - Requirement R1, Attachment 1, Section II Parts 6(d) and 6(e) - Requirement R2, Attachment 2, Section I Parts 7(d) and 7(e) - Requirement R4 # **Applicable Entities** - Reliability Coordinator - Planning Coordinator - RAS-entity the Transmission Owner, Generator Owner or Distribution Provider that owns all or part of a RAS ### **General Considerations** Reliability Standard PRC-012-2 consolidates previously unapproved standards and revises other RAS-related standards. Reliability Standard PRC-012-2 also provides clear and unambiguous responsibilities to the specific users, owners and operators of the Bulk Electric System. Reliability Standard PRC-012-2 establishes a new working framework between RAS-entities, Planning
Coordinators (PCs), and Reliability Coordinators (RCs), and this new framework will involve considerable start-up effort. As such, implementation of Reliability Standard PRC-012-2 will occur over a 36-month period after approval of the standard by the BCUC. ### **Limited Impact RAS** A RAS implemented prior to the effective date of PRC-012-2 that has been through the regional review process of the Western Electricity Coordinating Council (WECC) and is classified as a Local Area Protection Scheme (LAPS) in WECC is recognized as a limited impact RAS upon the effective date of PRC-012-2 and is subject to all applicable requirements. # **Effective Date** Reliability Standard PRC-012-2 became effective on October 1, 2021 after the BCUC's Order No. R-33-18 approved the standard. Provisions concerning the initial performance of obligations under Requirements R1, R2, R4, R8 and R9 are outlined below. ## Requirements R1, R2 and R4 Attachment 1, Section II Parts 6d) and 6e) as referenced from Requirement R1, Attachment 2 Section I Parts 7d) and 7e) as referenced from Requirement R2, and all of Requirement R4 shall become effective on the first day of the first calendar quarter, 36 calendar months after BCUC approval. # **Requirement R4** For existing RAS, initial performance of obligations under Requirement R4 must be completed within five (5) full calendar years after the effective date of Requirement R4, as described above. For new or functionally modified RAS, the initial performance of Requirement R4 must be completed within five (5) full calendar years after the date that the RAS is approved by the reviewing Reliability Coordinator(s) under Requirement R3. ## Requirement R8 For each RAS not designated as limited impact, initial performance of obligations under Requirement R8 must be completed at least once within six full calendar years after the October 1, 2021 effective date for PRC-012-2. For each RAS designated as limited impact, initial performance of obligations under Requirement R8 must be completed at least once within twelve full calendar years after the October 1, 2021 effective date for PRC-012-2. # Requirement R9 For each Reliability Coordinator that does not have a RAS database, the initial obligation under Requirement R9 is to establish a database by the October 1, 2021 effective date of PRC-012-2. Each Reliability Coordinator will perform the obligation of Requirement R9 within twelve full calendar months after the October 1, 2021 effective date of PRC-012-2.