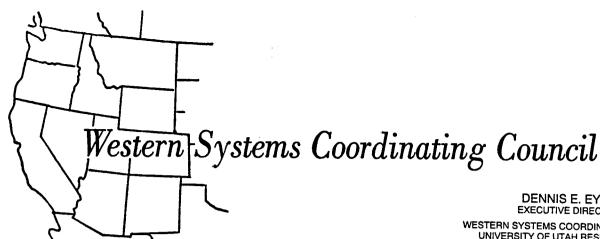
Document Title	WECC Test Guidelines for Synchronous Unit Dynamic Testing and Model Validation
File Name	WECCTestGuidelinesforSynchronousUnitDynamicTestingandModelValid ation.pdf
Category	() Regional reliability standard
	() Regional criteria
	() Policy
	(X) Guideline
	() Report or other
	() Charter
Document date	May 14, 2010
Adopted/approv	CWG and M&VWG
ed by	
Date	February 1997
adopted/approve	
d	
Custodian	Control Work Group and Modeling and Validation Work Group
(entity	
responsible for	
maintenance	
and upkeep)	
Stored/filed	Physical location:
	Web URL:
Previous	1997 Generator Test Request Letter.pdf
name/number	
Status	(X) in effect
	() usable, minor formatting/editing required
	() modification needed
	() superceded by
	() other
	() obsolete/archived)

WECC Guideline:


WECC Test Guidelines for Synchronous Unit Dynamic Testing and Model Validation Date: 2/1997

Introduction

This guideline provides instructions regarding validation of dynamics models for generating units. It was written to provide guidance on how to perform model validation to comply with a recommendation resulting from the 1996 WECC disturbance

Approved By:

Approving Committee, Entity or Person	Date
WECC Modeling and Validation Work Group	February 1997
WECC Control Work Group	February 1997

DENNIS E. EYRE EXECUTIVE DIRECTOR

WESTERN SYSTEMS COORDINATING COUNCIL UNIVERSITY OF UTAH RESEARCH PARK 540 ARAPEEN DRIVE, SUITE 203 SALT LAKE CITY, UTAH 84108-1288 TEL.: (801) 582-0353 FAX: (801) 582-3918

March 21, 1997

PLANNING COORDINATION COMMITTEE **OPERATIONS COMMITTEE** NON-WSCC MEMBER GENERATION OWNERS

> Subject: Testing of Synchronous Unit Reactive Limits and Dynamic Testing/Model

Validation

The disturbances on July 2 and August 10 have had a considerable impact on the Western Interconnection as well as the electric industry as a whole. Detailed system disturbance reports were prepared following these incidents to comply with WSCC's policies and to address questions raised by The President of the United States, the Department of Energy, and the North American Electric Reliability Council (NERC). Over 140 recommendations were adopted to address specific problem areas identified in the analysis of these events.

The testing of generating units is an extremely important issue which is addressed by the disturbance report recommendations. The reports call for the testing of all generating units in the Western Interconnection which have a generating capacity of 10 MW or greater. The PCC/OC Joint Guidance Committee has agreed that the most critical or largest units should be tested by June 1997 and all remaining units (10 MW or larger) should be tested by December 1997. Your cooperation as a generation owner in seeing that this testing is completed on schedule is vitally important to maintaining the reliability of electric service in the Western Interconnection.

The purpose of this letter is to inform you of the need to conduct the tests. provide you with test procedures that have been developed by technical experts from Western Systems Coordinating Council (WSCC) and the electric industry, and to provide information on who to contact if you have questions regarding the testing. Please submit your test results, in accordance with the enclosed procedures and requested timetable, to:

> Western Systems Coordinating Council 540 Arapeen Drive, Suite 203 Salt Lake City, UT 84108-1288

BACKGROUND

Following the disturbances of July 2 and August 10, 1996, the WSCC Control Work Group (CWG) and the Modeling and Validation Work Group (M&VWG) were tasked with developing guidelines for testing generators, excitation systems, power system stabilizers (PSS) and turbine governors for all units greater than 10 MW for:

- verification of reactive limits,
- proper performance of the dynamic control systems, and
- validation of the computer models used for stability analysis.

The data obtained from the field testing of the generator exciters, governors and power system stabilizers are to be validated for use in the models of these devices by conducting dynamic simulations of the tests. A good match between the test results and the dynamic simulation of the tests should be established.

TEST GUIDELINES

The attached steady-state synchronous machine reactive limits verification guidelines have been modified slightly since the original was released on November 25, 1996. If you have already performed the steady-state testing using the original guidelines you need not repeat the testing.

A testing workshop sponsored by the CWG and M&VWG was held in January 1997. Presentations were made by manufacturers, consultants and WSCC members experienced in dynamic testing of units and their control systems, and a panel discussion was held. Information from this workshop has been factored into the enclosed testing guidelines.

It is recognized that the generating units to be tested vary in sizes over a wide range from the smaller ratings to greater than 1,000 MW, with speeds ranging from about 90 to 3,600 rpm. Unit types include large high speed thermal and nuclear units, slow speed hydroelectric units up to 700 MW and combustion turbine units ranging from 25 to 120 MW and larger. Furthermore, excitation systems are of the rotating (DC or AC) type or static type with brushes, or rotating brushless type. Governors are of the mechanical dashpot needle type or electrohydraulic PID type. The newer control systems for excitation systems, PSS and governors are of the digital type.

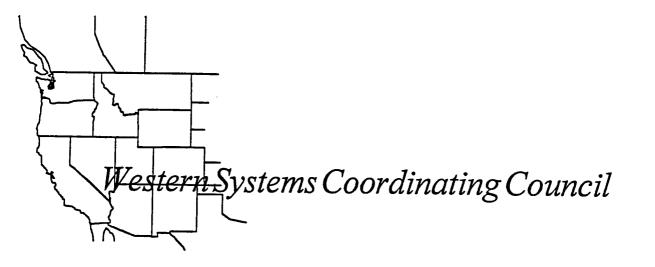
It is evident therefore that test guidelines to cover such a wide range of unit types and ratings cannot incorporate in detail what is ideally required for testing each particular unit. Consequently, the enclosed guidelines for dynamic testing are general in scope and content. Typical test methods and guidelines are suggested, but the final selection of the tests to be performed should be made by the test engineer after discussing with the plant test personnel and the analytical modeling engineer the most appropriate tests for the particular type and rating of the unit to be tested.

SCHEDULING OF TESTS

Scheduling of the tests should be performed with care. Scheduling tests of the larger units or plants equal to or greater than 500 MW should be coordinated over the WSCCNet so that there is no danger of near simultaneous

trips or disturbances arising from these tests, or of more than one large plant or unit being tested at the same time by different owners. Generators should be tested in order of importance to system reliability. The larger units/plants critical to system reliability should have testing completed by June, 1997 as required by the August 10 disturbance report. If it is impossible to complete critical unit testing by this date, it is imperative that you complete the steady-state tests by June, 1997, with dynamic testing of these units completed as soon as possible thereafter.

In order to complete validation of WSCC models in a timely manner, all testing of critical units must be completed by June 1997 and testing of non-critical units must be completed by December 1997. These are important dates which we urge you to meet. If you are not able to meet these dates for any reason, please provide a test plan, timeline of expected completion, and reasons for the delay in testing to the WSCC office by April 18, 1997.


If you have any questions, please call either Bart McManus, Chairman, WSCC Control Work Group, at 360-418-2309 or Les Pereira, Chairman, WSCC Modeling & Validation Work Group, at 916-781-4218.

Sincerely,

les de la company de la compan

DEE:aml enclosure

cc: Technical Studies Subcommittee Members
Committee on Regional Electric Power Cooperation
W/enclosure

TEST GUIDELINES FOR SYNCHRONOUS UNIT DYNAMIC TESTING AND MODEL VALIDATION

Prepared by:

WSCC
Control Work Group and
Modeling & Validation Work Group

February 1997

TABLE OF CONTENTS

Notice
1. Objectives
2. General2
3. Previous Testing of Units
4. Data Required for Model Validation and Submission Method
5. Approach to Validation3
6. Levels of Validation
7. Suggested Methods Relating to Parameter Validation for Dynamic Modeling 4
8. Sample Test Plans
9. Sample Model Validation Process
10. Suggested Methods Relating to Control and Protection Verification
11. Memo Items
12. Bibliography7
13. Appendices

NOTICE

These test guidelines were prepared by the WSCC Control Work Group and the Modeling & Validation Work Group to provide general information to WSCC Members for performance testing and model validation of generating units' dynamic control and protection systems. This general information has been obtained from practices in the industry and also in published technical literature. Neither WSCC or members of the work groups mentioned above, nor any person acting on behalf of any of them, makes any warranty, express or implied, with respect to the use of any information, method of process or instrument/device disclosed in this document, or assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, method or process, or instrument/device disclosed in this document.

TEST GUIDELINES FOR SYNCHRONOUS UNIT DYNAMIC TESTING AND MODEL VALIDATION

1. OBJECTIVES

These guidelines apply to the testing of generator excitation systems, power system stabilizers (PSS) and turbine governors for:

- proper performance of the dynamic control systems, and
- validation of the computer models used for stability analysis.

The task for testing the generator excitation systems, power system stabilizers (PSS) came from the August 10, 1996 Disturbance Report. Governor testing and validation was also added following studies and recommendations by the Operating Capability Study Group (OCSG). The guidelines also include the validation of key modeling data for the synchronous machine that are required for correct stability model simulation.

2. GENERAL

It is recognized that generating units to be tested vary in sizes over a wide range with speeds ranging from about 90 to 3,600 rpm. Guidelines to cover such a wide range of unit types and ratings cannot incorporate in detail what is ideally required for each particular unit.

These guidelines are therefore necessarily general in scope and content. Typical test methods and guidelines are suggested, but the final selection of the tests to be performed will be made by the test engineer after discussing with the plant test personnel and the analytical modeling engineer what are the most appropriate tests for the particular type and rating of the unit to be tested.

It is recognized that plants with multiple identical units will not require repetition of all of the work for every unit. Model validation work may be executed in full for one unit and need be repeated only as required by variations in the units. Performance verification work, however, must be carried out in full for every unit. Where performance tests reveal a unit whose performance is significantly different than the others even though it is nominally of the same design, data for that unit shall be validated and submitted in full.

It must be noted that this guideline pertains to the testing for performance and model validation of units and not to plant design, protection, or maintenance philosophies or practices. Nevertheless, where testing for performance reveals deficiencies in unit dynamic control systems performance, or miscoordination of protection and these control systems, these should be corrected and the validated data should describe the plant as corrected.

3. PREVIOUS TESTING OF UNITS

If a unit has had detailed testing performed on it in the past five years and has not been modified and parts of this data validation were achieved by this work that work need not be repeated.

4. DATA REQUIRED FOR MODEL VALIDATION AND SUBMISSION METHOD

- Plant parameters in Table 1 as related to Levels of Validation (described in Section 6 below).
- Technical data and block diagrams of selected models from Appendix A.
- Submission method for data as described in Appendix C.

5. APPROACH TO PERFORMANCE AND VALIDATION TESTS

In considering their approach to data validation and scheduling the test, the owners should consider the following:

- The type and rating of the unit
- The availability and currency of standard technical data including manufacturers' capability curves, control transfer function diagrams, control and protection schematic drawings and documentation of settings
- The service cycle of the unit and daily/weekly/seasonal availability for testing
- The availability and currency of commissioning and other test results.
- The availability of operating and test staff in owner's organization
- The availability of reserve capacity in owners system during test periods.

The integrity and security of both the plant being tested and the external power system are paramount at all times and in all circumstances are overriding.

6. LEVELS OF VALIDATION

Table 1 lists the most significant parameters of a plant which need to be validated and classifies them in three levels below. These assignments are not related to the requirement of verification for performance.

Level A parameters:

These parameters are essential. Validated parameter values MUST be provided.

Level B parameters:

The accuracy of values of these parameters has a clear effect on the accuracy of interconnected system studies. It is highly desirable that the values of these parameters should be validated.

Values of these parameters MUST be provided. If they have not been validated, the reason therefore should be stated. (e.g. - test session was curtailed because of overheating of transformers or detailed tests on similar units have established confidence in design data.)

Level C parameters:

These parameters are useful but not essential. Values should be provided as available. If values are not provided, standard default values may be used in interconnected system studies

7. SUGGESTED METHODS RELATING TO PARAMETER VALIDATION FOR DYNAMIC MODELING

Because limits and mode changes are of prime importance, large displacement/perturbation tests are required. Tests using small perturbations, such as frequency response measurements, may be applied where appropriate to characterize linear transfer function elements of the models.

Large displacement tests can be executed, for example, by injecting a voltage step into the voltage regulator reference, by tripping the generator circuit breaker with the unit running at an appropriate moderate load, or by judicious switching of a nearby transmission line.

All tests procedures and instrumentation must be applicable for both steady state and over the bandwidth that the equipment can respond, typically 0.01Hz to 10Hz.

Examples of validation of parameters from test recordings are:

- a. The inertia constant of a unit is given by the initial acceleration when the generator main circuit breaker is tripped from a moderate initial MW loading. (Refer to Figure A).
- b. Voltage regulator maximum output or maximum field voltage can be identified by applying a positive step to the voltage regulator reference. The magnitude and duration of the step, and the initial condition must be chosen to ensure that the generator stator voltage remains within acceptable limits. (Refer to Figure B).
- c. Generator d-axis reactances and time constants can be measured directly from the recording of stator voltage following tripping of the main circuit breaker when the generator is running at an initial output of 0 MW, moderate leading MVAR and fixed field voltage. (Refer to Figure C.)
- d. Generator saturation factors are given directly by the generator open circuit magnetization curve at rated voltage of 1.0 pu and 1.2 times rated voltage. This curve is measured by manually adjusting field current upward from minimum with the generator at rated speed disconnected from the system. The owner must determine the allowable maximum voltage for test and extrapolate test results as necessary to extend the curve to 1.2 times rated voltage. (Refer to Figure D.)
- e. Power system stabilizer linear characteristics can be identified by frequency response tests relating stabilizer input (or inputs) to stabilizer output. (Refer to Figure E.) See also WSCC Test Procedure for Power System Stabilizers.

- f. Voltage regulator series current compensating impedance can be identified by measuring the change in generator terminal voltage when a zero power factor stator current is interrupted by opening the main circuit breaker with the voltage regulator in automatic mode. (Refer to Figure F.) Polarity of series current compensation is critical. The data submission must state whether the polarity of the compensation produces a drooping or rising voltage-current characteristic. A drooping characteristic is used to give a proportional reactive power sharing in units that are bussed at their terminals. A rising characteristic is used on plants with unit-connected transformers to improve control of high side voltage bus.
- g. Governor droop can be measured by noting the initial and final turbine speed in a test where the generator is tripped from a moderate real power load. The droop shall be identified as being obtained by valve position feedback or electrical power feedback. The MW power rejected shall be the largest value allowed by plant and system operating considerations. Alternatively, governor droop can be measured by plotting a graph of generator electrical output or gate position versus speed reference position. Where accurate system performance monitoring recorders exist, governor droop can be measured directly from response to a significant system disturbance. (Refer to Figure G.)
- h. Intentional governor dead-band can be measured by running the unit synchronized to the bus and injecting a small but progressively increasing signal at the governor reference. The level of this signal when a change is seen in the governor output indicates the magnitude of the dead band. The tests should be run in both directions. (Refer to Figure H.)

8. SAMPLE TEST PLANS

Three sample test plans are attached as appendices: Appendix D is a test plan for the measurement of generator-excitation system and governor characteristics, Appendix E is a generator excitation system and power system stabilizer test procedure, and Appendix F is a test plan for testing and model validation of hydro governors. These test plans are provided for general information. As stated in the Notice in the front of this document, WSCC makes no warranty, or assumes any liabilities, express or implied, with respect to the use of any information, method of process or instrument/device disclosed in this document.

9. SAMPLE MODEL VALIDATION PROCESS

Before any testing for validation is performed, the owner should be satisfied that the dynamic behavior of the unit is satisfactory. If not, the unit's controls should be tuned for proper performance before testing for data validation is commenced.

The following is a sample model validation process for the generator excitation system and turbine-governor that could be utilized. The modeling engineer will no doubt have other preferred ways of verifying that the model parameters give an accurate simulation of the test results. In the end, the model data when used in the stability program of choice should give an accurate simulation of the test results.

- a. Collect all technical data for the unit. Set up simulation models for the equipment in the stability program of choice.
- b. Specify the tests to be performed.
- c. Simulate the planned tests to obtain a set of expected response data.
- d. Perform the tests. (Example, load rejection or step response, with PSS off.)
- e. Compare the pre-test simulations to the corresponding tests. (Note: Verify that the stability simulations have the same initial values as the field tests for all voltage, current, and power quantities.)
- f. If the stability program time simulation plots for key variables show a reasonable fit to the test results, the existing model data is validated. Submit the data to WSCC in the appropriate model sheets in Appendix A for the GE stability program and in the forms in Appendix C.
- g. If the stability program time simulation plots for key variables do not show a reasonable fit to the test results, it is necessary to repeat the simulations with refined estimates of parameter values until an adequate match is reached. Also verify all limiter values in the model are correct. Additional tests may have to be performed for model validation including load rejection, step response tests and frequency response tests. Obtaining the model parameters to obtain the best fit for the model to test results requires the use of dynamic control system theory, Bode plots and data reduction methods.
- h. Submit the validated data to WSCC in the appropriate model sheets in Appendix A for the GE stability program and in the forms in Appendix C.

10. SUGGESTED METHODS RELATING TO CONTROL AND PROTECTION VERIFICATION

a. Limits and trips related to overexcited and underexcited operation should be field checked by tests in which step changes are applied to the voltage regulator to drive it to a high or low output within prudence. The high or low output should be allowed to remain in effect until corrected by limiters or trips. The time delays and levels at which the limiters or trips operate should be recorded. Limiter and/or trip settings may need to be temporarily changed during testing in order to avoid excessive currents and/or voltages. Alternatively, calibrate the limiter while the unit is shut down using conventional relay test techniques. Where practical, limits and trip settings should be determined by challenging the limits in loaded operation. Where appropriate, the limiter and trip elements can be described by graphs and/or tables. (Refer to Figure I.)

- b. Correct operation of Volts/Hz trip and limiter devices can be verified for example by observing the response of the excitation system as the machine speed is reduced. (Refer to Figure J.)
- c. Owners should verify that the limiters are properly coordinated with protection to prevent unwanted trips and specify whether these are limiters or protection devices. Most limiters leave the excitation system in automatic with the limiter or terminal voltage controlling the excitation level. Protection devices trip the excitation to manual (a preset value) or trip the unit circuit breaker.

11. **MEMO ITEMS**

Memo items are defined as those additional descriptive items to be submitted by the owner for which there are no specific data entry locations in the Submission Forms. Memo items include the following.

- a. Power factor controller status should be reported.
- b. There are a wide variety of specific special-purpose limiters in particular plants and particular manufacturers' equipment. These should be described in a memo item and noted in the Submission Forms in Appendix C.

12. **BIBLIOGRAPHY**

The bibliography is given in Appendix G.

13. **APPENDICES**

- Model Block Diagrams and Data Α
- **Definitions** В
- C. **Submission Forms**
- Example of Test Plan for Measurement of Generator-Excitation System Turbine-D. Governor Characteristics.
- Example of Generator Excitation System and Power System Stabilizer Test Procedure. E. F.
- Example of Hydro Turbine Governor Modeling.
- G. Bibliography

TABLE 1

Plant Parameters and Levels of Validation

Levels of Validation Generator				Excitation Cont	Excitation Control & Protection	Correman I implement	T the team
						ONCE HOL	Limiters
	rator Exciter	PSS	Governor	Limits	Trips	Hydro	Steam
*	X. Max Efd	Knee	D (droon)		į		
, H		Type of Input	(doom) v	Overexcitation OEL-	Loss of Field	Tunnels/Tanks	Boiler Modes
T do,	Static	Dominant	δmj	1 ype/Setung 1 Inderevoitation - 11E1	LPP Interface	Motoring/	BF, TF, CC
₩			Gain At	Type/Setting	Over/Under Freq.	Water	
S1.0			K. → K6	V/HZ	Over current Excitation	Depressed	Load Limiters
S1.			Pmax	Power Factor	Overcurrent		
	Xcomp		Intentional Deadband	Control Status	V/HZ		
	K, Tr. TbT, etc/		Vel max	Stator Current limit			
	Se (DC exc)						
, X			Tw Kp				
, X P.X	X, (SCPT		, X			_	7
B Tdo"			Ţ				
× _	(Generex)		$T_1 \rightarrow T_4$				
	Se (Brushless)		Steam//Turbine				
	Efd Max		Model			-	
	(Brushless)						
~ ·			D (turbine damping)				
₹ ¥ 							-
. K							

NOTE: For symbol definitions and typical models, see also Appendices A and B.

Nomenclature for Table 1

Exciter

Ka

Ta

Tb Tc

Vrmax

Kf

Tf Se

Voltage regulator gain Voltage regulator time constant, sec

Lag time constant, sec

Lead time constant, sec

Maximum control element output, pu

Rate feedback gain, pu

Rate feedback time constant, sec

Saturation factor

Generator

T'do T"do T'go

T"qo Η

D Xd

> XqX'd X'q X'd X"a **X**1

Se (1.0) Se (1.2) Ra

Rcomp Xcomp D-axis transient rotor time constant

D-axis subtransient rotor time constant O-axis transient rotor time constant O-axis subtransient rotor time constant

Inertia constant, MW-sec/MVA

Damping factor, pu

D-axis synchronous reactance Q-axis synchronous reactance D-axis transient reactance O-axis transient reactance D-axis subtransient reactance O-axis subtransient reactance Stator leakage reactance, pu Saturation factor at 1 pu flux Saturation factor at 1.2 pu flux

Stator resistance, pu

Compounding resistance for voltage control, pu Compounding reactance for voltage control, pu

Turbine - Governor (Hydro)

Tg

Tp Uo Uc

Pmin Rperm Rtemp

Pmax

Tr Tw Gate serve time constant, sec

Pilot serve valve time constant, sec

Maximum gate opening velocity, p.u./sec Maximum gate closing velocity, p.u./sec

Maximum gate opening, p.u. Minimum gate opening, p.u. Permanent droop, p.u.

Temporary droop, p.u.

Dashpot (Relaxation or reset) time constant, sec

Water inertia time constant, sec

Nomenclature for Table 1 Page 2

Turbine -Governor (Steam)

K T1 T2 T3 U0 Uc Pmax Pmin T4 K1 K2 T5 K3 K4 T6	Governor gain, p.u. (reciprocal of droop) Governor lead time constant, sec Governor lag time constant, sec Valve positioner time constant, sec Maximum valve opening velocity, p.u./sec Maximum value closing velocity, p.u./sec (<o) (*i.e.,="" after="" boiler="" bowl="" constant="" constant,="" developed="" first="" fraction="" hp="" inlet="" lp="" maximum="" minimum="" of="" opening,="" p.u.="" pass="" pass,="" piping="" power="" reheater),="" sec="" sec<="" second="" steam="" th="" third="" time="" turbine="" valve=""></o)>
K5	Fraction of hp turbine power developed after third boiler pass
K6	Fraction of lp turbine power developed after third boiler pass
T7	Time constant of fourth boiler pass
K7	Fraction of hp turbine power developed after fourth boiler pass
K8	Fraction of lp turbine power developed after fourth boiler pass

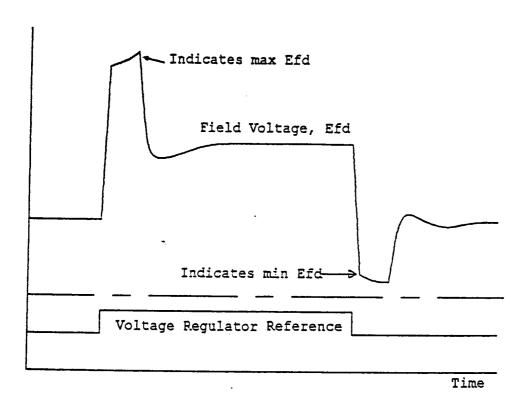


Figure B Estimation of maximum and minimum field voltages from response to step changes in voltage regulator reference setting

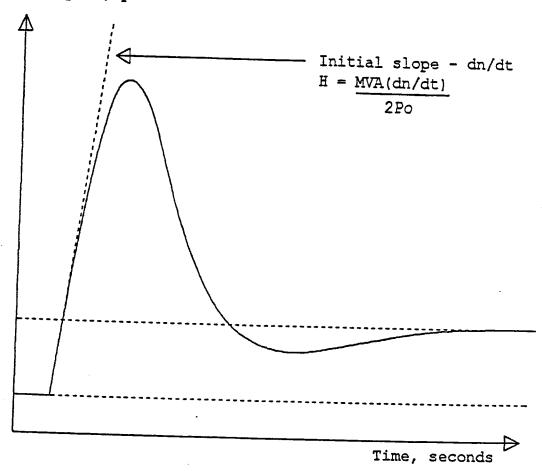


Figure A Derivation of Machine Inertia Constant, H, and governor droop, R, from trip of Po MW

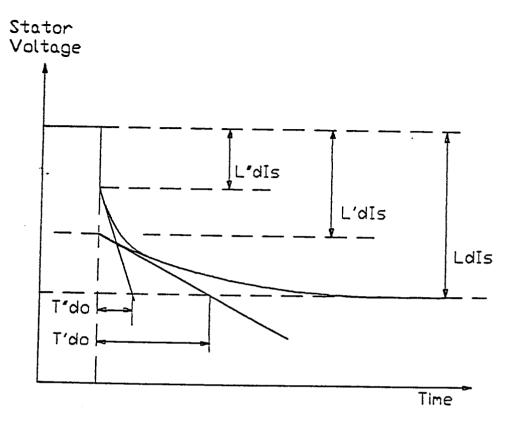


Figure C Estimation of generator reactances and time constants from response to tripping of zero power factor leading current, Is

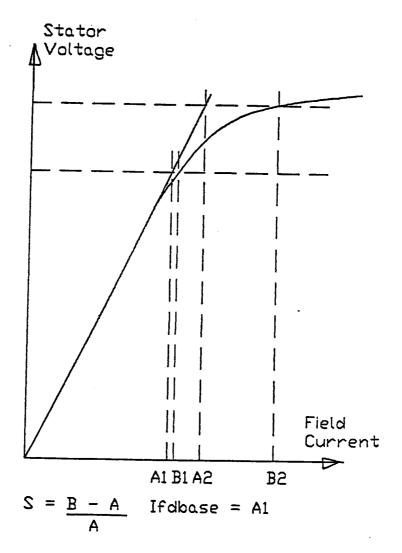
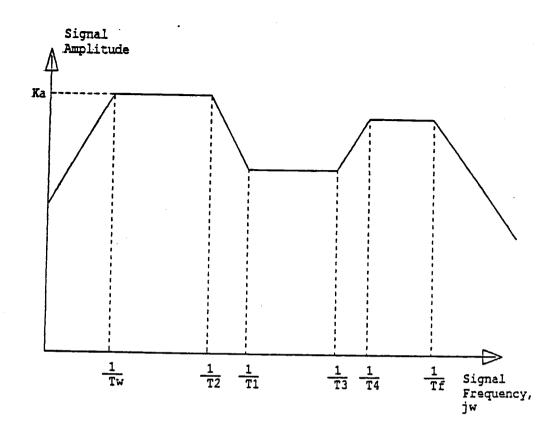



Figure D Estimation of Field
Current Base Value and
generator saturation
parameters from open
circuit magnetization
curve

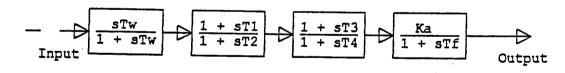


Figure E Estimation of Voltage Regulator
Linear Transfer Function Parameters
from Frequency Response Test

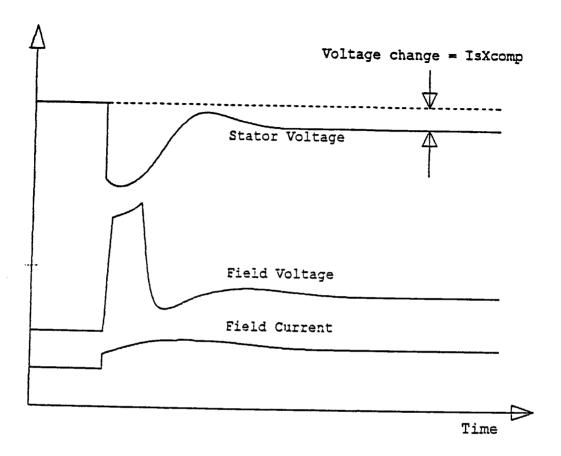


Figure F Estimation of Voltage Regulator Series
Current Compensating Reactance from
Response to Tripping Zero Power Factor
Leading Current, Is

Shaft Speed, pu

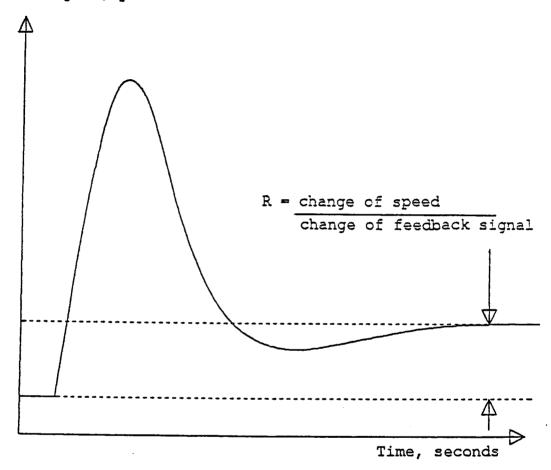


Figure G Estimation of Governor Permanent
Droop from response to tripping of
moderate real power load

Feedback signal may be valve or gate opening, electrical power, or governor output signal

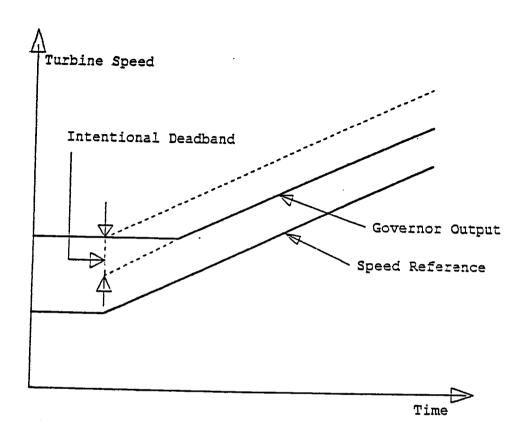


Figure H Estimation of Intentional Dead Band from response to Ramp change of Governor Speed Reference

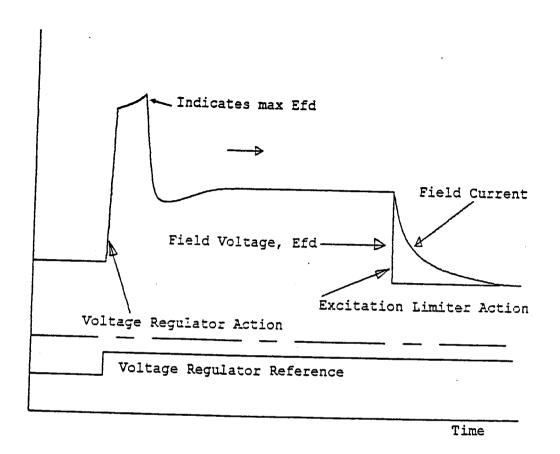
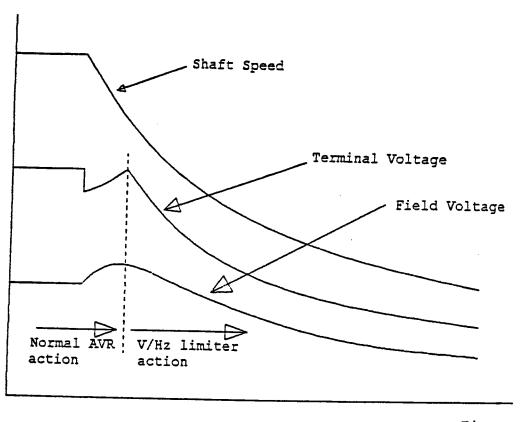



Figure I Estimation of Overexcitation limiter
Characteristics from response to step
changes of voltage regulator reference

Time

Figure J Response of shaft speed and voltages following trip from moderate real power load reveals volts/Hz limiter characteristics

APPENDIX A

MODEL BLOCK DIAGRAMS AND DATA

TECHNICAL DATA, MODELS AND BLOCK DIAGRAMS

Typical block diagrams from stability programs based on IEEE and WSCC models have been included to assist the test and modeling engineers. The appropriate models should be selected and copied for each unit. Model data should be entered in each model block diagram sheet after validation.

If other models are used, these should be adequately described by a block diagram and corresponding data tables.

It is recognized that for some of the older units such data may be incomplete or unavailable. After model validation, all assumptions made in the derivation of the model should be clearly stated in the documentation.

Correspondence Between WSCC Models and PSDS Models

Type of Model	Description :	Model EPC	Name WSCC
MACHINE	* Detailed generator * Classical generator * Induction motor	gentpf gencls motor1	MF MC MI
EXCITATION	* Amplidyne/Magamp controlled dc exciter	exdcl	FA
	 Amplidyne/Magamp controlled dc exciter bus voltage regulator supply 	exdc2	FB
	* Alternator exciter with non-controlled rectifiers	exacl	FC
	* Compound source static exciter	exst2	FD
	* DC exciter with motor-driven rheostat contactor control	exdc4	FE
	* Alternator exciter with non-controlled rectifiers - high initial response	exac2	FF
•	* Alternator exciter with controlled rectifiers	exac4	FG
	* Alternator exciter with non-controlled rectifiers - output dependent control	exac3	FH
	* WSCC Transition Excitation System Model	exstj	FJ
	* Bus-fed static exciter	exstl	FK
	* Series current-potential transformer or internal winding exciter	exst3	FL
GOVERNOR	* Steam	tgovl	GS
	* Hydro	pygov	GW
STABILIZER	* Power system stabilizer	wsccst	ST
STATIC VAR	* Thyristor controlled reactor	VWSCC	v
RELAY	* Under frequency relay	lsdt1	UF
	* Under voltage relay	lsdt2	υv
DC	* DC line model	cdc6	D ,
LOAD	* Algebraic voltage frequency dependence	alwacc blwacc zlwacc	LA LB

REPRESENTATIVE LIST OF GE MODELS

Model Name: Description:

exacl IEEE type AC1 excitation system

exacla Modified IEEE type AC1 excitation

system

exac2 IEEE type AC2 excitation system

exac3 IEEE type AC3 excitation system

exac3a IEEE type AC3 excitation system

exac4 IEEE type AC4 excitation system

exac6a IEEE type AC6a excitation system

exbas Basler static voltage regulator feeding dc or ac

rotating exciter

exbbb ABB Unitrol Voltage Regulator with

stator current compounded rotating

exciter

exbbc Transformer fed static excitation

system

exdc1 IEEE type 1 excitation system model.

Represents systems with d.c. exciters and continuously acting voltage regulators, such as amplidyne-based

excitation systems

exdc2 IEEE type 2 excitation system model.

exdc2a

IEEE type dc2a excitation system model.. Represents systems with d.c. exciters

and continuously acting voltage regulators, such as amplidyne-based

excitation systems

exdc4

"Old" IEEE type 4 excitation system model. Represents systems with d.c. exciters and non- continuously acting

voltage regulators.

exeli

Static PI transformer fed excitation system

exst1

IEEE type ST1 excitation system

exst2

IEEE type ST2 excitation system

exst3

IEEE type ST3 excitation system

exst3a

IEEE type ST3a excitation system

exst4b

IEEE type ST4b excitation system

g2wscc

Double derivative hydro governor and turbine

Represents WSCC G2 model

gast

Single shaft gas turbine

gpwscc

PID governor and turbine Represents WSCC GP model

gentpf

Generator represented by uniform inductance ratios rotor modeling to match WSCC type F model; shaft speed effects are neglected

hygov

Hydro turbine and governor. Represents plants with straight forward penstock configurations and hydraulic-dashpot governors or electro-hydraulic

governors that mimic dashpot governors (i.e. Woodward

hydraulic; ASEA electrohydraulic)

hyst1 Hydro turbine with Woodward Electro-hydraulic PID

Governor, Penstock, Surge Tank, and Inlet Tunnel

ieeeg1 IEEE turbine/governor model

ieeeg3 IEEE hydro turbine/governor model.

mexs Manual excitation control with field circuit

resistance

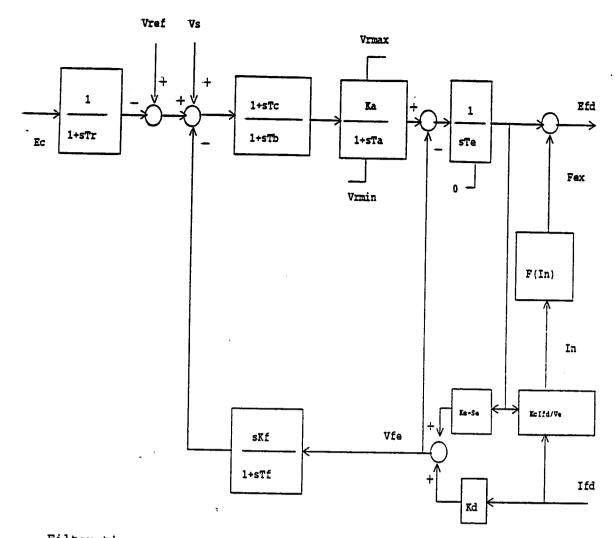
motor1 Induction machine modeled with rotor flux transients

motorw Motor model

pfqrg Power factor / Reactive power regulator

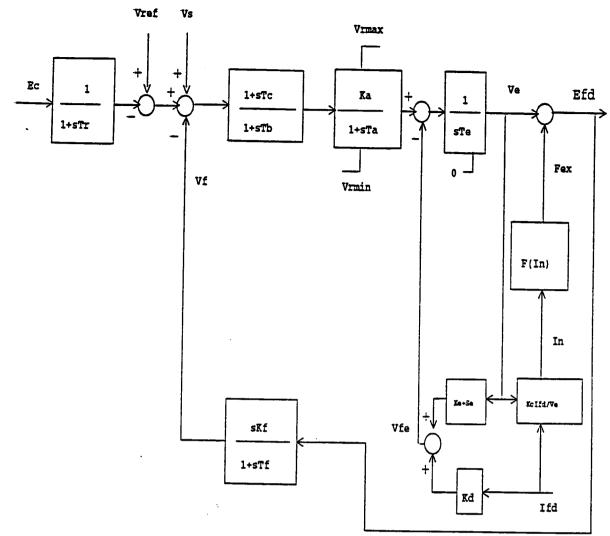
pss2a Dual input PSS (IEEE type PSS 2A)

pss2b Dual input PSS (IEEE type PSS 2A) + voltage boost signal

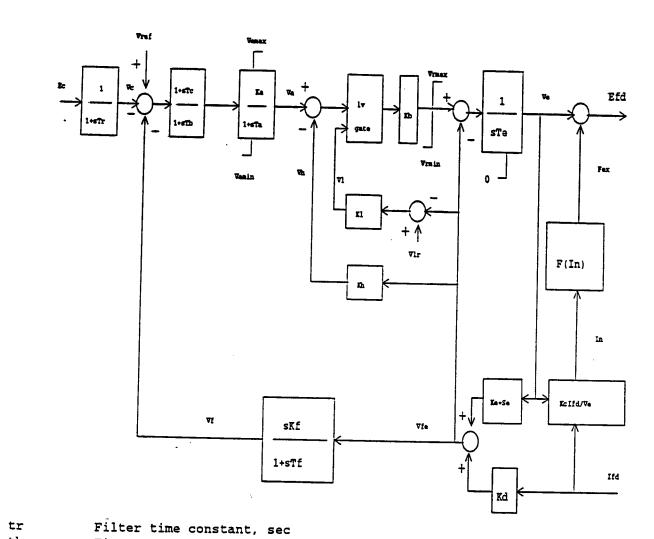

silco5 Canadian GE Silco5 excitation system model

svcwsc Static var device model

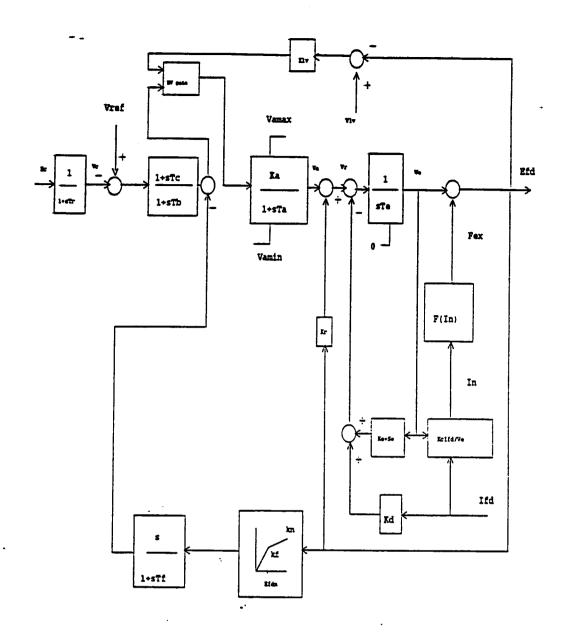
vwscc WSCC Static var device model


w2301 Woodward 2301 governor and basic turbine model

wsccst WSCC Power System Stabilizer

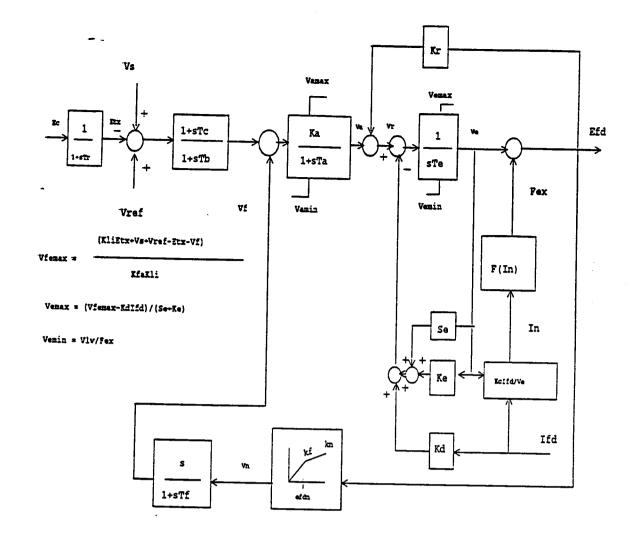

```
Filter time constant, sec
 tr
tb
         Time constant, sec
tc
         Time constant, sec
ka
        Voltage regulator gain
ta
         Time constant, sec
        Maximum control element output, p.u.
Vrmax
        Minimum control element output, p.u.
vrmin
te
        Exciter time constant, sec
        Rate feedback gain, p.u.
kf
tf
        Rate feedback time constant, sec
        Rectifier regulation factor, p.u.
kc
kd
        Exciter internal reactance, p.u.
ke
        Exciter field resistance constant, p.u.
        Field voltage value, 1
e1
        Saturation factor at E1
se1
        Field voltage value, 2
e2
se2
        Saturation factor at E2
```

exacl IEEE type AC1 excitation system

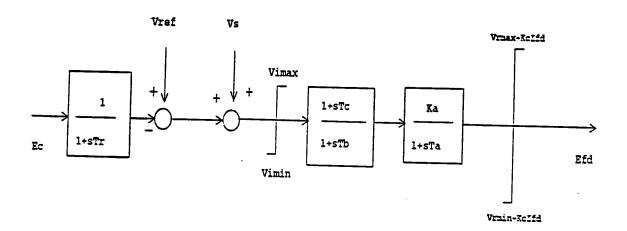



```
Filter time constant, sec
 tr
 tb
       Lag time constant, sec
tc
       Lead time constant, seca
ka
       Voltage regulator gain
ta
       Time constant, sec
vrmax Maximum control element output, p.u.
vrmin Minimum control element output, p.u.
te
       Exciter time constant, sec
kf
       Rate feedback gain, p.u.
       Rate feedback time constant, sec
tf
       Exciter regulation factor, p.u.
kc
      Exciter internal reactance, p.u.
kd
ke
      Exciter field resistance constant, p.u
e1
      Field voltage value, 1
se1
      Saturation factor at E1
e2
      Field voltage value, 2
se2
      Saturation factor at E2
```

exacla Modified IEEE type AC1 excitation system



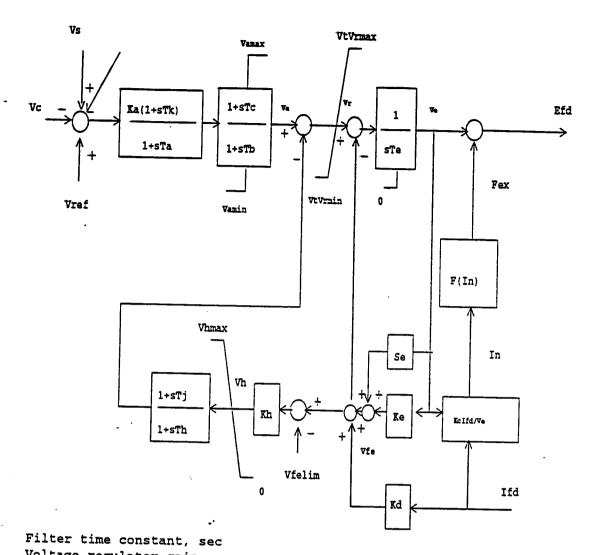

```
tb
           Time constant, sec
tc
           Time constant, sec
ka
           Voltage regulator gain
ta
           Time constant, sec
vamax
           Maximum control element output, p.u.
vamin
           Minimum control element output, p.u.
kb
           Exciter field current controllergain, p.u.
VIMax
           Maximum exciter control signal, p.u.
vrmin
           Minimum exciter control signal, p.u.
           Exciter time constant, sec
te
kl
           Exciter field current limiter gain, p.u.
kh
           Exciter field current feedback gain, p.u.
kf
           Rate feedback gain, p.u.
tf
           Rate feedback time constant, sec
kc
           Rectifier regulation factor, p.u.
kd
           Exciter internal reactance, p.u.
ke
           Exciter field resistance constant, p.u.
vlr
           Maximum exciter field current, p.u.
e1
           Field voltage value, 1
           Saturation factor at E1
sel
e2
           Field voltage value, 2
se2
           Saturation factor at E2
```




```
tr
                Filter time constant, sec
tb
                Time constant, sec
                Time constant, sec
tc
                Voltage regulator gain
ka
ta
                Time constant, sec
vamax
                Maximum control element output, p.u.
vamin
                Minimum control element output, p.u.
te
                Exciter time constant, sec
klv
                Minimum field voltage limiter gain, p.u.
kr
                Field voltage feedback gain, p.u.
kf
                Low level rate feedback gain, p.u.
tf
                Rate feedback time constant, sec
kn
                High level rate feedback gain, p.u.
efdn
                Rate feedback gain break level, p.u.
kc
                Rectifier regulation factor, p.u.
kd
                Exciter internal reactance, p.u.
ke
                Exciter field resistance constant, p.u.
vlv
                Minimum excitation limit, p.u.
el
                Field voltage value, 1
sel
                Saturation factor at El
                Field voltage value, 2
e2
se2
                Saturation factor at E2
```

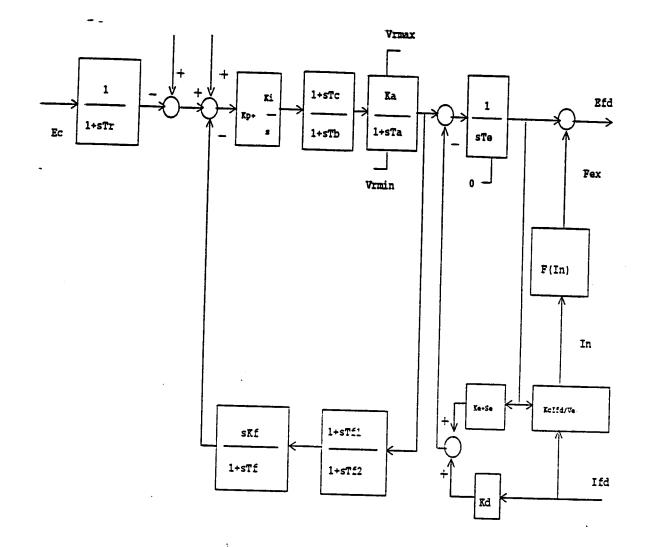
exac3 IEEE type AC3 excitation system


```
tr
         Filter time constant, sec
 tb
         Time constant, sec
 tc
         Time constant, sec
 ka
         Voltage regulator gain .
 ta
         Time constant, sec
 Vamax
         Maximum control element output, p.u.
 vamin
         Minimum control element output, p.u.
 te
         Exciter time constant, sec
 klv
         Minimum field voltage limiter gain, p.u.
 kr
         Field voltage feedback gain, p.u.
 kf
         Low level rate feedback gain, p.u.
 tf
         Rate feedback time constant, sec
 kn
         High level rate feedback gain, p.u.
 efdn 🗧
         Rate feedback gain break level, p.u.
 kc
         Rectifier regulation factor, p.u.
         Exciter internal reactance, p.u.
 kd
        Exciter field resistance constant, p.u.
 ke
 vlv
        Minimum excitation limit, p.u.
 e1
        Field voltage value, 1
 se1
        Saturation factor at E1
       · Field voltage value, 2
 e2
se2
        Saturation factor at E2
kli
        Field current limit parameter (=.59)
kfa
        Field current limit parameter
        (defaults to Kf)
```

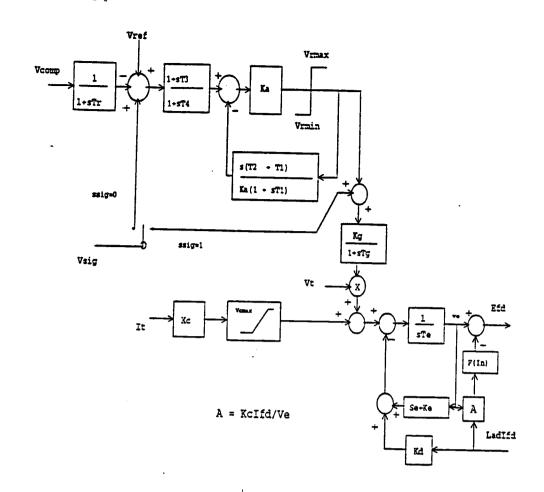


tr Transient time constant, sec

vimax Maximum error, p.u.
vimin Minimum error, p.u.
tc Lead time constant, sec
tb Lag time constant, sec

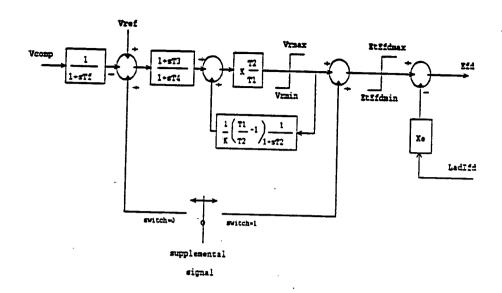
ka Gain


ta Time contant, sec

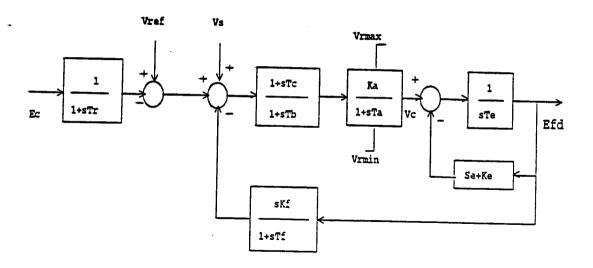
vrmax Maximum controller output, p.u.
vrmin Minimum controller output, p.u.
kc Excitation system regulation, p.u.


```
ka
            Voltage regulator gain
ta
            Time constant, sec
 tk
            Time constant, sec
 tb
            Time constant, sec
 tc
            Time constant, sec
           Maximum control element output, p.u.
vamax
vamin
            Minimum control element output, p.u.
Vrmax
           Maximum exciter control signal, p.u.
vrmin
           Minimum exciter control signal, p.u.
te
           Exciter time constant, sec
kh
           Exciter field current limiter gain, p.u.
tj
           Field current limiter time constant, sec
th
           Field current limiter time constant, sec
vfelim
           Exciter field current limit reference, p.u.
           Maximum field current limiter signal, p.u.
vhamx
         . Rectifier regulation factor, p.u.
kc
kd
           Exciter internal reactance, p.u.
ke
           Exciter field resistance constant, p.u.
e1
           Field voltage value, 1
se1
           Saturation factor at E1
e2
           Field voltage value, 2
se2
           Saturation factor at E2
```

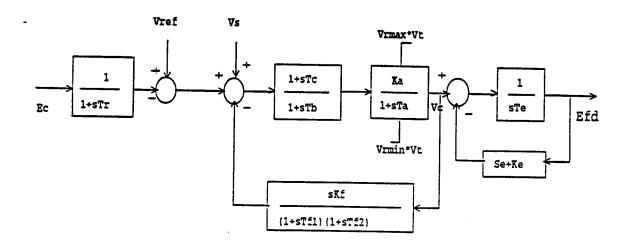
tr


```
Voltage transducer time constant, sec
 tr
kp
        Proportional gain
ki
        Integral ( reset ) gain
ka
        Gain
ta
        Bridge time constant, sec
tb
        Lag time constant, sec
        Lead time constant, sec
tc
       Maximum control output, pu
Vrmax
vrmin
       Minimum control output, pu
kf
        Rate feedback gain
        Rate feedback time constant, sec
tf
       Feedback lead time constant, sec
tf1
tf2
        Feedback lag time constant, sec
ke
       Exciter field proportional constant
        Exciter field time constant,
te
                                           sec
       Rectifier regulation factor, pu
kc
kd
       Exciter regulation factor, pu
       Exciter flux at knee of curve, pu
e1
       Saturation factor at knee of curve
se1
       Maximum exciter flux, pu
e2
       Saturation factor at maximum exciter flux, pu
se2
```

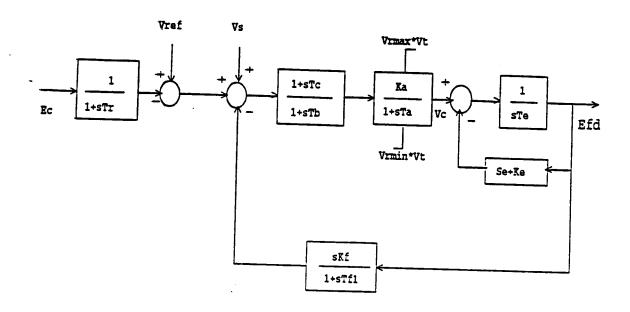
exbas Basler static voltage regulator feeding dc or ac rotating exciter


```
Voltage transducer time constant, sec
 tr
 ka
        DC gain
 t1
        Proportional time constant, sec.
 t2
        Proportional time constant, sec.
t3
        Derivative time constant, sec
        Derivative time constant, sec
t4
vrmin
        Minimum controller output, pu
        Maximum controller output, pu
vrmax
kg
        Gating circuit gain
        Firing circuit time constant, sec.
tg
        Exciter field proportional constant
ke
        Exciter field time constant. sec.
te
kc
        Rectifier regulation factor, p.u.
        Exciter regulation factor, p.u.
kd
        Exciter compounding reactance, p.u.
ХC
        Maximum compounding voltage, p.u.
vcmax
        Field voltage value, 1
e1
se1
        Saturation factor at El
e2
        Field voltage value, 2
se2
        Saturation factor at E2
       Supplementary signal routing switch
ssig
```

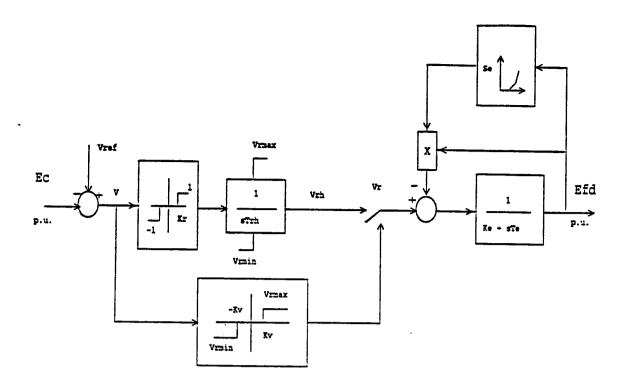
exbbb ABB Unitrol Voltage Regulator with stator current compounded rotating exciter


```
tf
        Filter time constant, sec
        Controller time constant, sec
t1
t2
        Controller time constant, sec
t3
        Lead/lag time constant, sec
t4
       Lead/lag time constant, sec
k
       Steady state gain
       Minimum control element output, pu
vrmin
       Maximum control element output, pu
Vrmax
       Minimum open circuit exciter voltage,
efmin
efmax
       Maximum open circuit exciter voltage,
           pu
       Effective excitation transformer
хe
           reactance, pu
       Supplementary signal routing switch
sisig
```

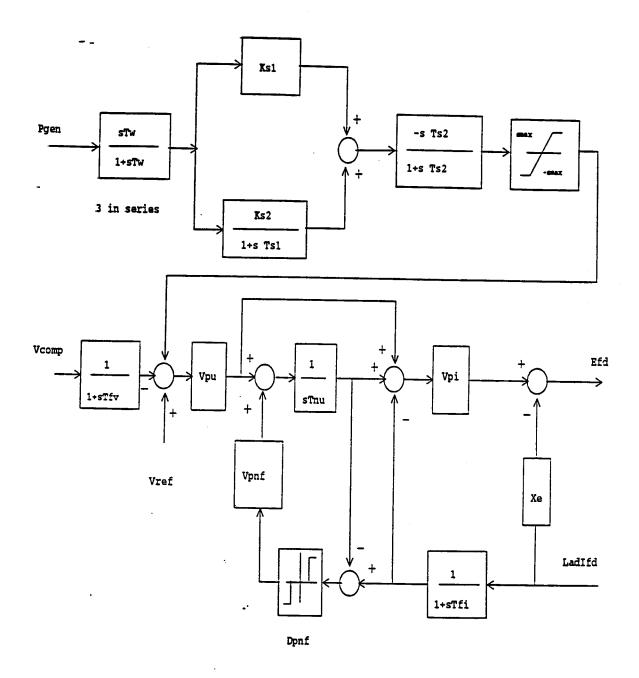
exbbc Transformer fed static excitation system


```
tr
        Transducer time constant, sec
ka
        Voltage regulator gain
ta
        Voltage regulator time constant, sec
tb
        Lag time constant, sec
tc
        Lead time constant, sec
vrmax
        Maximum control element output, pu
vrmin
        Minimum control element output, pu
        Exciter field resistance line slope
ke
           margin, pu
te
        Exciter field time constant, sec
kf
        Rate feedback gain, pu
tf1
        Rate feedback time constant, sec
tf2
        Required entry of zero
e1
        Field voltage value, 1
se1
        Saturation factor at E1
e2
        Field voltage value, 2
se2
        Saturation factor at E2
```

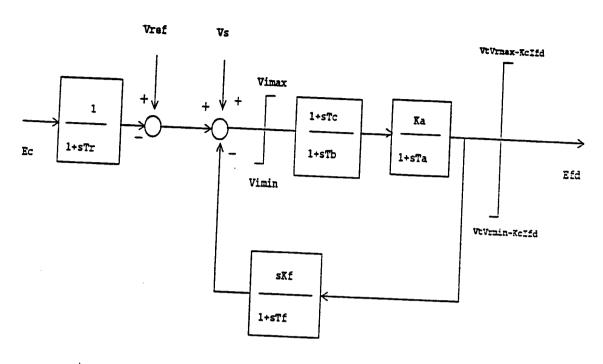
exdc1 IEEE type 1 excitation system model.
Represents systems with d.c. exciters and continuously acting voltage regulators, such as amplidyne-based excitation systems


```
tr
        Transducer time constant, sec
ka
        Voltage regulator gain
        Voltage regulator time constant, sec
ta
tb
        Lag time constant, sec
tc
        Lead time constant, sec
VIMAX
        Maximum control element output, pu
vrmin
        Minimum control element output, pu
        Exciter field resistance line slope
ke
           margin, pu
te '
        Exciter field time constant, sec
kf
        Rate feedback gain, pu
       Rate feedback time constant, sec
tf1
tf2
       Feedback time constant, sec
e1
       Field voltage value, 1
sel
       Saturation factor at E1
e2
       Field voltage value, 2
se2
       Saturation factor at E2
```

exdc2 IEEE type 2 excitation system model.


```
tr
         Transducer time constant, sec
ka
         Voltage regulator gain
ta
         Voltage regulator time constant, sec
tb
         Lag time constant, sec
tc
         Lead time constant, sec
VIMAX
         Maximum control element output, pu
vrmin
        Minimum control element output, pu
ke
         Exciter field resistance line slope
            margin, pu
te
        Exciter field time constant, sec
kf
        Rate feedback gain, pu
tf1
        Rate feedback time constant, sec
tf2
        Feedback time constant, sec
e1
        Field voltage value, 1
se1
        Saturation factor at E1
e2
        Field voltage value, 2
se2
        Saturation factor at E2
```

exdc2a Represents systems with d.c. exciters and continuously acting voltage regulators, such as amplidyne-based excitation systems


```
kr
        Voltage error threshold for rheostat action,
             pu
trh
        Rheostat full range travel time, sec
kv
        Voltage error threshold min/max control
             action, pu
vrmax
        Maximum control element output, pu
vrmin
        Minimum control element output, pu
te
        Exciter field time constant, sec
ke
        Exciter field resistance line slope margin pu
e1
        Field voltage value, 1
sel
        Saturation factor at E1
e2
        Field voltage value, 2
se2
        Saturation factor at E2
```

exdc4 "Old" IEEE type 4 excitation system model. Represents systems with d.c. exciters and non- continuously acting voltage regulators.


```
tfv
        Voltage transducer time constant, sec
tfi
        Current transducer time constant, sec
tnu
        Controller reset time constant, sec
vpu
        Voltage controller proportional gain
        Current controller gain
vpi
vpnf
        Controller follow up gain
dpnf
       Controller follow up dead band, pu
efmin
      Minimum open circuit excitation voltage, pu
efmax
       Maximum open circuit excitation voltage, pu
       Excitation transformer effective reactance, pu
хe
       Stabilizier parameters
tw
ks1
ks2
ts1
ts2
smax
```

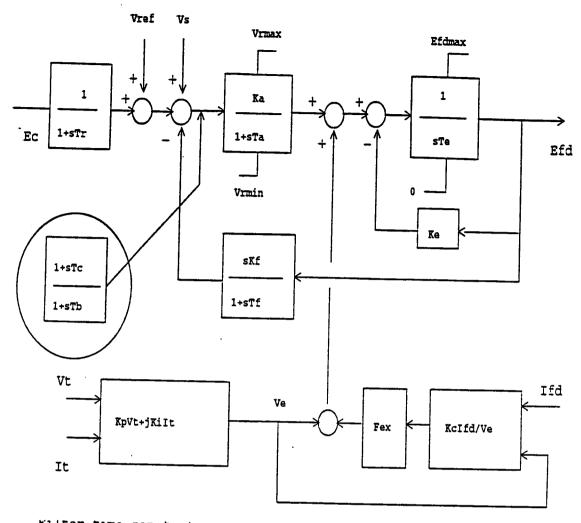
exeli Static PI transformer fed excitation system

tr Filter time constant, sec

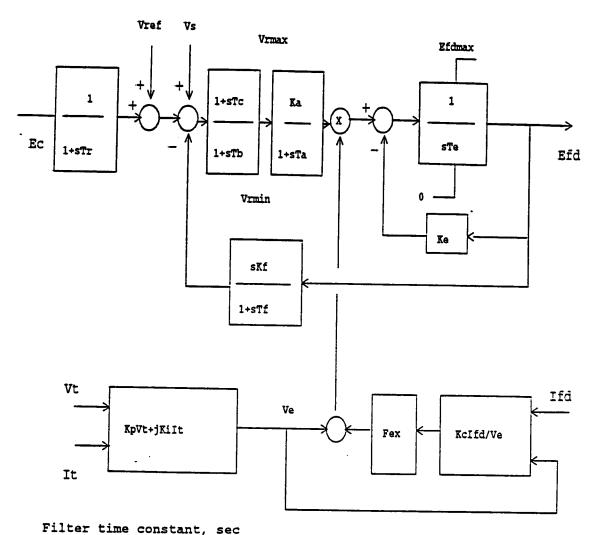
vimax Maximum error, pu vimin Minimum error, pu

tc Lead time constant, sec tb Lag time constant, sec

ka Gain


ta Time constant, sec

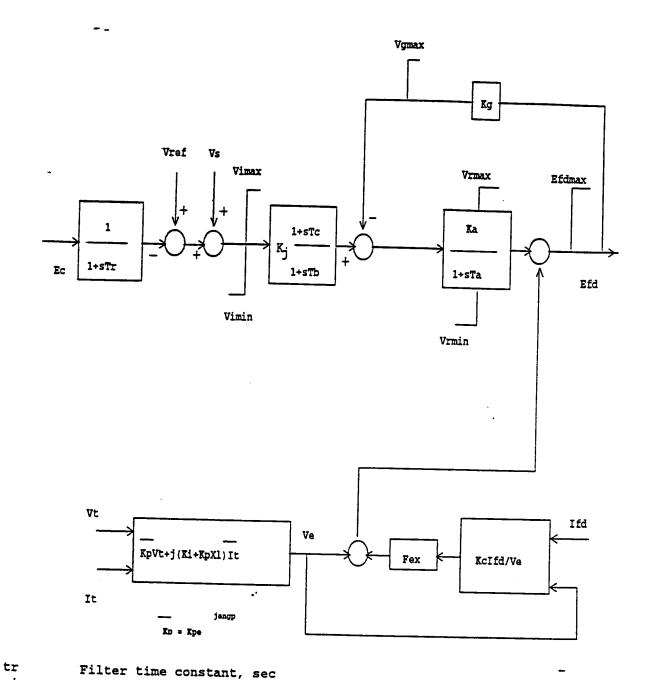
Vrmax Maximum controller output Minimum controller output vrmin


Excitation system regulation factor, pu kc

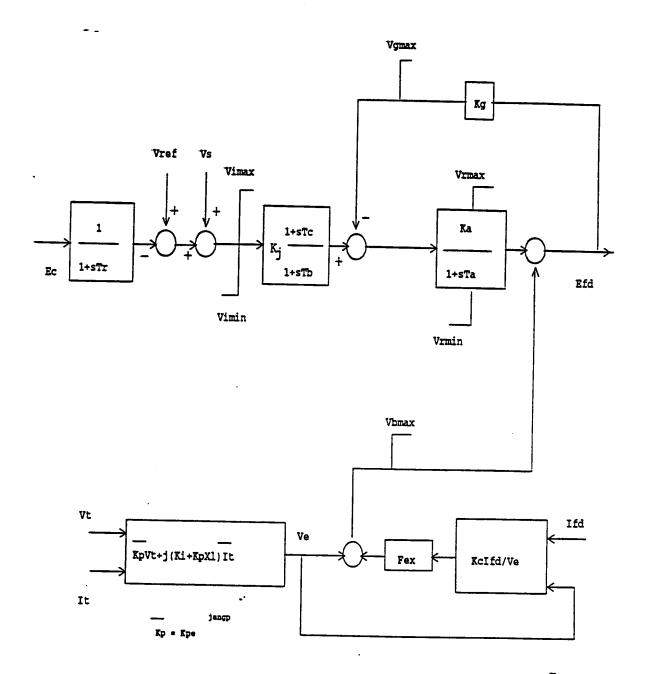
kf Rate feedback gain

Rate feedback time constant, sec tf

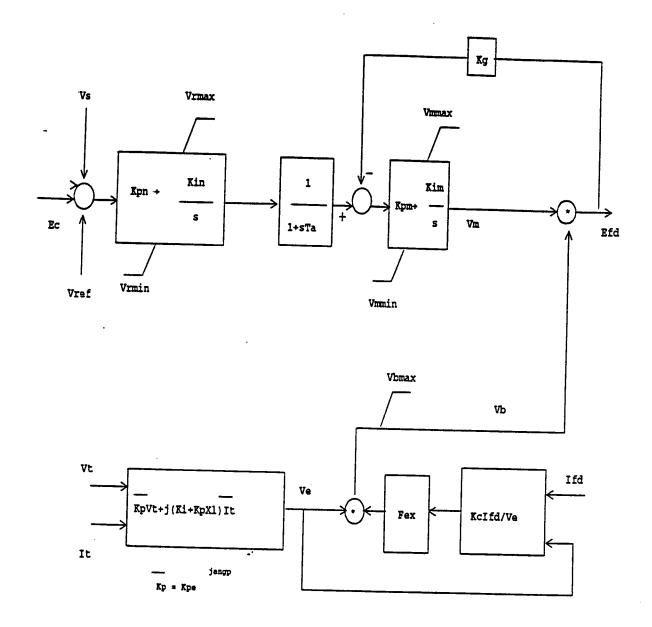

```
tr
         Filter time constant, sec
ka
         Gain, p.u.
ta
         Time constant, sec
vrmax
        Maximum control element output, pu
vrmin
        Minimum control element output, pu
ke
        Exciter field resistance time constant, pu
te
        Exciter time constant, sec
kf
        Rate feedback gain
tf
        Rate feedback time constant, sec
kp
        Potential source gain, p.u.
ki
        Current source gain, p.u.
kc
        Exciter regulation factor, p.u.
efdmax
        Maximum field voltage
tb
        Time constant, sec
tc
        Time constant, sec
```



ka Gain, p.u. ta Time constant, sec Maximum control element output, pu vrmax vrmin Minimum control element output, pu ke Exciter field resistance time constant, pu te Exciter time constant, sec kf Rate feedback gain tf Rate feedback time constant, sec Potential source gain, p.u. kp ki Current source gain, p.u. kc Exciter regulation factor, p.u. efdmax Maximum field voltage Time constant, sec

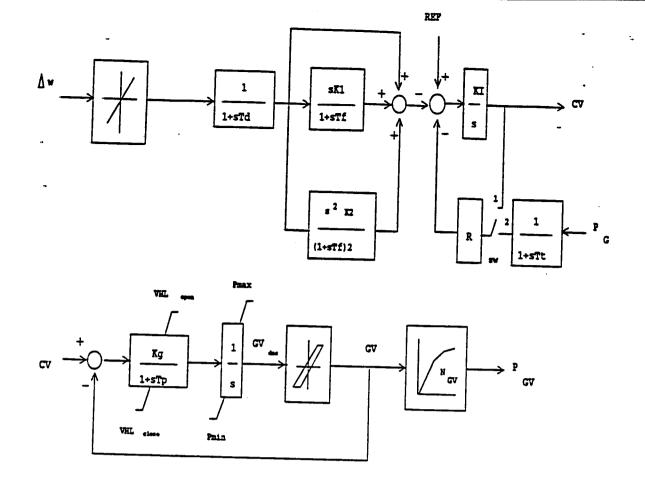
Time constant, sec


tr

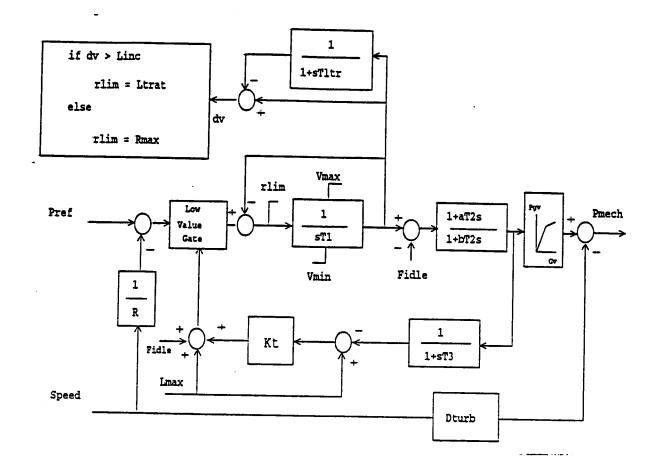
tb tc


> exst2a IEEE type ST2 excitation system

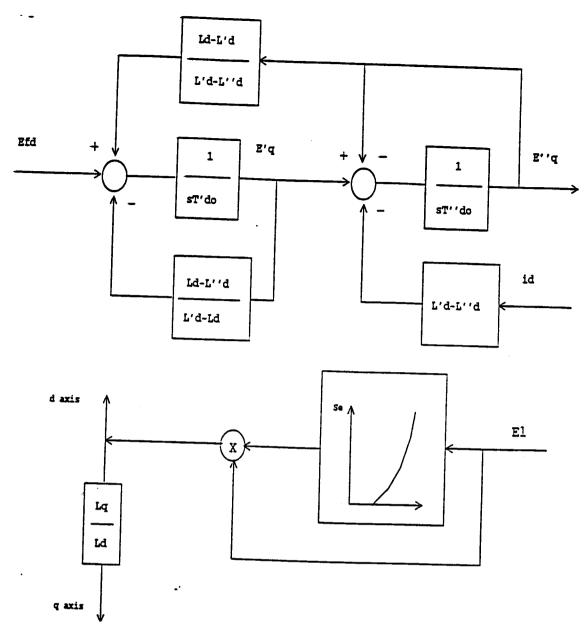

```
vimax
          Maximum error, pu
vimin
          Minimum error, pu
kj
          Gain, pu
tc
          Lead time constant, sec
tb
          Lag time constant, sec
ka
          Gain, pu
ta
          Time constant, sec
VIMAX
          Maximum controller output, pu
vrmin
          Minimum controller output, pu
kg
          Excitation limiter gain, pu
kp
          Potential source gain, pu
ki
          Current source gain, pu
efdmax
          Maximum excitation output, pu
          Exciter regulation factor, pu
kc
хl
          Excitation current coupling reactance, pu
vgmax
          Maximum excitation voltage
          Phase angle of potential source, degrees
angp
```



Filter time constant, sec tr vimax Maximum error, pu vimin Minimum error, pu kj Gain, pu tc Lead time constant, sec tb Lag time constant, sec ka Gain, pu Time constant, sec Maximum controller output, pu vrmax vrmin Minimum controller output, pu kg Excitation limiter gain, pu kp Potential source gain, pu Current source gain, pu ki vbmax Maximum excitation voltage, pu kc Exciter regulation factor, pu xlExcitation current coupling reactance, pu vgmax Maximum excitation voltage angp Phase angle of potential source, degrees

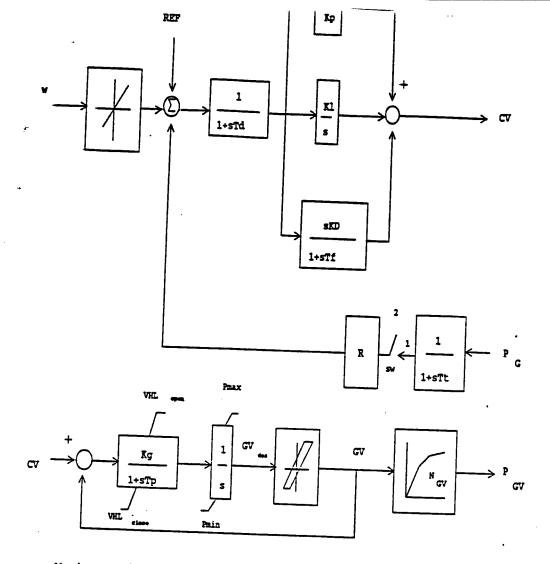

Filter time constant, sec kpr Proportional Gain, p.u. kir Integral Gain, p.u. ta Time constant, sec VIMAX Maximum control element output, pu vrmin Minimum control element output, pu Prop. Gain of field voltage regulator, p.u. kpm Integral Gain of field voltage regulator, p.u. kim Maximum field voltage regulator output, pu VIIIIIax Minimum field voltage regulator output, pu vmmin Excitation limiter gain, pu kg . Potential source gain, pu kp Phase angle of potential source, degrees angp ki Current source gain, pu kc Exciter regulation factor, pu xl Main generator leakage reactance, pu Maximum excitation voltage vbmax

tr

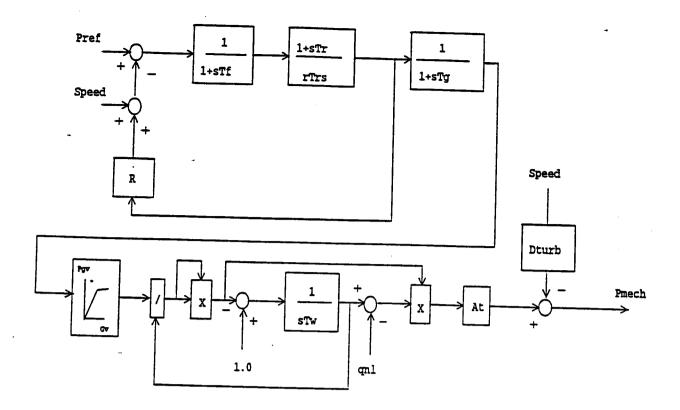



```
pmax
             Maximum turbine output, MW
pmin
             Minimum turbine output, MW
r
             Steady-state droop, p.u.
td
             Input filter time constant, sec
tf
             Washout time constant, sec
tp
             Gate servo time constant, sec
velop
             Maximum gate opening velocity, p.u./sec
velcl
             Maximum gate closing velocity, p.u./sec
k1
             Single derivative gain, p.u.
k2
             Double derivative gain, p.u.
ki
             Governor gain, p.u.
ka
             Gate servo gain, p.u.
tturb
             Turbine time constant, sec
                                             (see note g)
aturb
             Turbine numerator multiplier
                                             (see note g)
             Turbine denominator multiplier (see note g)
bturb
             Electrical power feedback time const., sec
tt
db1
             Intentional deadband width, Hz.
eps
             Intentional db hysteresis, Hz.
db2
             Unintentional deadband, MW
av1
             Nonlinear gain point 1, p.u. gv
             Nonlinear gain point 1, p.u. power
pgv1
             Nonlinear gain point 2, p.u. gv
gv2
pgv2
             Nonlinear gain point 2, p.u. power
gv3
             Nonlinear gain point 3, p.u. gv
pgv3
             Nonlinear gain point 3, p.u. power
gv4
             Nonlinear gain point 4, p.u. gv
pgv4
             Nonlinear gain point 4, p.u. power
gv5
             Nonlinear gain point 5, p.u. gv
pgv5
             Nonlinear gain point 5, p.u. power
```

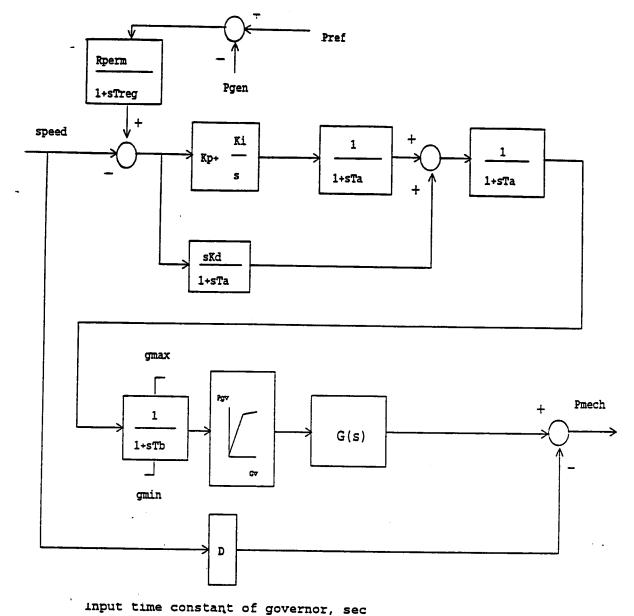
g2wscc Double derivative hydro governor and turbine.
(Represents WSCC G2 governor plus turbine model.)


r Permanent droop, pu t1 Governor mechanism time constant, sec t2 Turbine power time constant, sec t3 Turbine exhaust temperature time constant, sec lmax Ambient temperature load limit kt Temperature limiter gain vmax Maximum turbine power; pu vmin Minimum turbine power, pu dturb Turbine damping coefficient, pu fidle Fuel flow at zero power output, pu rmax Maximum fuel valve opening rate, pu/sec loadinc Valve position change allowed at fast rate, pu tltr Valve position averaging time constant, sec ltrate Maximum long term fuel valve opening rate, pu/sec Turbine power time constant numerator scale factor Ъ Turbine power time constant denominator scale factor

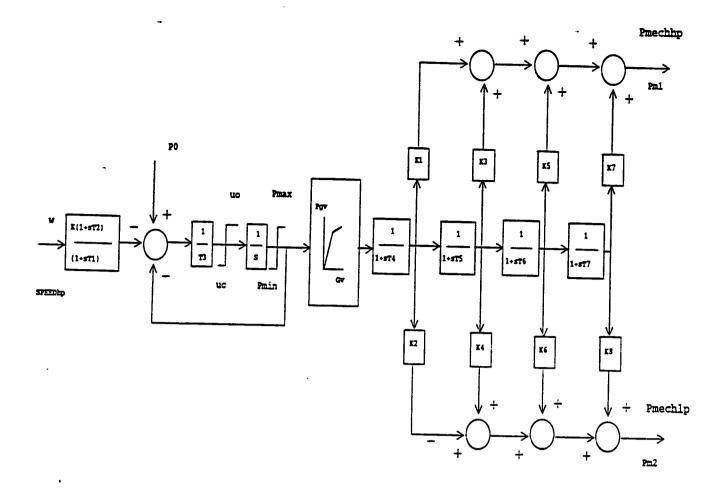

```
tpdo
             D-axis transient rotor time constant
             D-axis subtransient rotor time constant
  tppdo
             Q-axis transient rotor time constant
  tpqo
             Q-axis subtransient rotor time constant
  tppqo
  h
             Inertia constant, sec
  đ
             Damping factor, pu
 ld
             D-axis synchronous reactance
 lq
             Q-axis synchronous reactance
 lpd
            D-axis transient reactance
 lpq
             Q-axis transient reactance
            D-axis subtransient reactance
 lppd
            Q-axis subtransient reactance
 lppq.
            Stator leakage reactance, pu
 11
 s1
            Saturation factor at 1 pu flux
 s12.-
            Saturation factor at 1.2 pu flux
            Stator resistance, pu
 ra
            Compounding resistance for voltage control, pu
 TCOMP
            Compounding reactance for voltage control, pu
- xcomp
            Acceleration factor for network boundary
 accel
            iteration
```


-24-

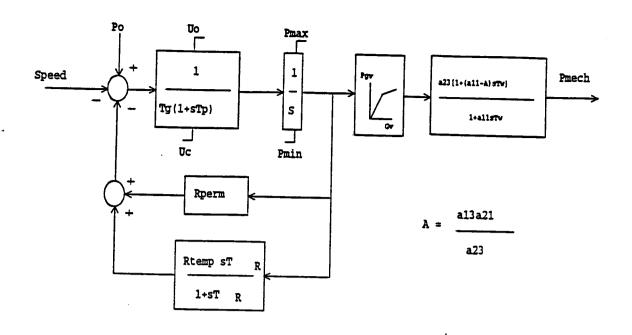
gentpf Generator represented by uniform inductance ratios rotor modeling to match WSCC type F model; shaft speed effects are neglected


```
pmax
              Maximum turbine output, MW
 pmin
              Minimum turbine output, MW
 r
              Steady-state droop, p.u.
 td
              Input filter time constant, sec
 tf
              Washout time constant, sec
 tp
              Gate servo time constant, sec
 velop
              Maximum gate opening velocity, p.u./sec
 velcl
              Maximum gate closing velocity, p.u./sec
 kp
              Proportional gain, p.u.
 kd
              Derivative gain, p.u.
 ki
              Integral gain, p.u.
kg
             Gate servo gain, p.u.
 tturb
             Turbine time constant, sec
                                             (see note h)
aturb
             Turbine numerator multiplier
                                             (see note h)
bturb
             Turbine denominator multiplier (see note h)
tt
             Power feedback time constant, sec
dbl
             Intentional deadband width, Hz.
eps
             Intentional db hysteresis, Hz.
db2
             Unintentional deadband, MW
av1
             Nonlinear gain point 1, p.u. gv
pgv1
             Nonlinear gain point 1, p.u. power
gv2
             Nonlinear gain point 2, p.u. gv
pgv2
             Nonlinear gain point 2, p.u. power
             Nonlinear gain point 3, p.u. gv
gv3
pgv3
             Nonlinear gain point 3, p.u. power
             Nonlinear gain point 4, p.u. gv
gv4
             Nonlinear gain point 4, p.u. power
pgv4
             Nonlinear gain point 5, p.u. gv
gv5
pgv5
             Nonlinear gain point 5, p.u. power
gv6
             Nonlinear gain point 6, p.u. gv
                                gpwscc PID governor and turbine.
```

gpwscc PID governor and turbine.
(Represents WSCC GP governor plus turbine model.)

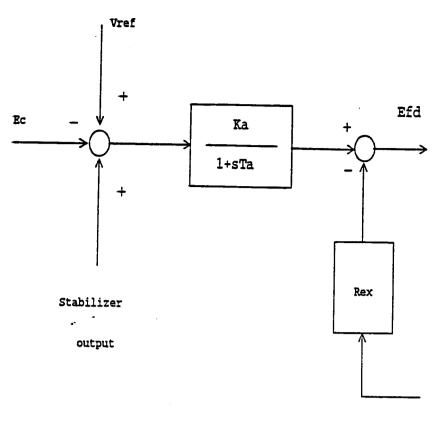

rperm Permanent droop, p.u. rtemp Temporary droop, p.u. tr Washout time constant, sec tf Filter time constant, sec tg Gate servo time constant, sec velm Maximum gate velocity, p.u./sec gmax Maximum gate opening, p.u. gmin Minimum gate opening, p.u. tw Water inertia time constant, sec at Turbine gain, p.u. dturb Turbine damping factor, p.u. qnl No-load turbine flow at nominal head, p.u. ttrip Turbine trip flag

hygov Hydro turbine and governor. Represents plants with straight forward penstock configurations and hydraulic-dashpot governors or electro-hydraulic governors that mimic dashpot governors (i.e. Woodard hydraulic; ASEA electrohydraulic)



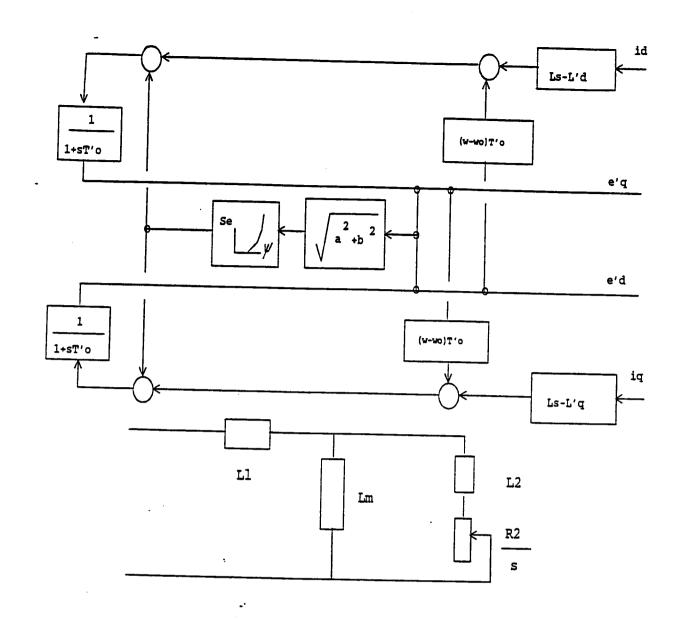

```
creg
 rperm
                 Governor droop, per unit
kp
                 Governor proportional gain
ki
                 Governor Integral gain
kd
                 Governor Derivative gain
ta
                 Governor High Frequency Cuttoff Time
                       Constant
tb
                Gate servo time constant
velmax
                Max gate opening velocity, p.u./sec
velmin
                Max gate closing velocity, p.u./sec
gmax
                Max gate opening, p.u.
gmin
                Min gate opening, p.u.
pmax
                not used
pmin
                not used
đ
                Turbine Damping Coefficient
twp
                Penstock Water Time Constant, sec
twt
                Tunnel Water Time Constant, sec
flos
                Tunnel Loss Coefficient, p.u.
as1
                Area constant of Upper Surge Tank,
                   sec
as2
                Area constant of Lower Surge Tank,
h2
                Level of surge tank size change, per
                   unit
```

hyst1 Hydro turbine with Woodward Electro-hydraulic PID Governor, Penstock, Surge Tank, and Inlet Tunnel

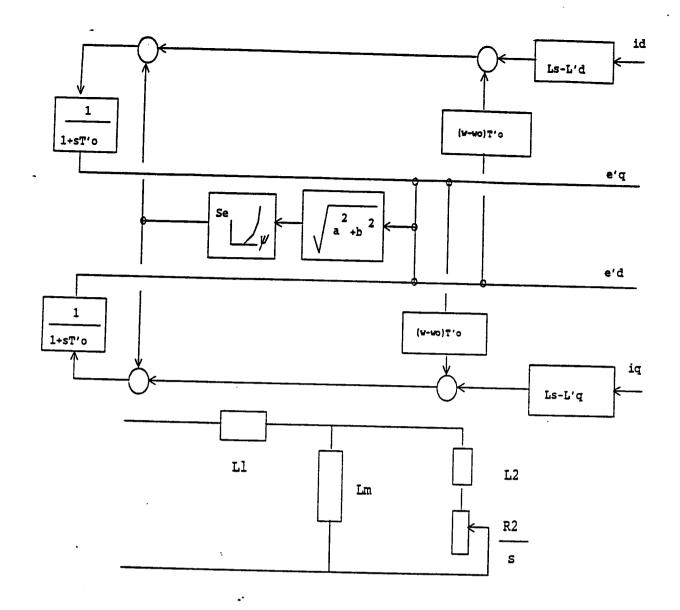


k Governor gain, p.u. (reciprocal of droop) t1 Governor lead time constant, sec t2 Governor lag time constant, sec t3 Valve positioner time constant, sec uo Maximum valve opening velocity, p.u./sec uc Maximum valve closing velocity, p.u./sec (<0) Maximum valve opening, p.u. pmax pmin Minimum valve opening, p.u. t4 Inlet piping/steam bowl time constant, sec k1 Fraction of hp turbine power developed after first boiler pass k2 Fraction of lp turbine power developed after first boiler pass t5 Time constant of second boiler pass (i.e. reheater), sec k3 Fraction of hp turbine power developed after second boiler pass k4 Fraction of lp turbine power developed after second boiler pass t6 Time constant of third boiler pass, sec k5 Fraction of hp turbine power developed after third boiler pass


```
tg
             Gate servo time constant, sec
             Pilot servo valve time constant, sec
tp
             Maximum gate opening velocity, p.u./sec
uo
uc
             Maximum gate closing velocity, p.u./sec
pmax
             Maximum gate opening, p.u.
pmin
             Minimum gate opening, p.u.
rperm
             Permanent droop, p.u.
rtemp
             Temporary droop, p.u.
tr
             Dashpot time constant, sec
tw
             Water inertia time constant, sec
a11
             Turbine parameter (
                                     ), p.u.
a13
             Turbine parameter (
                                     ), p.u.
a21
             Turbine parameter (
                                     ), p.u.
a23
             Turbine parameter (dP/dg), p.u.
```

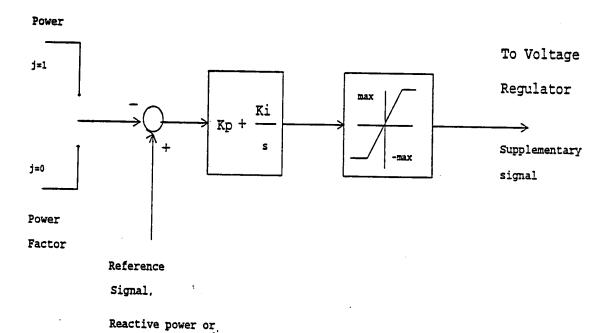

ieeeg3 IEEE hydro turbine/governor model.

Ladifd


ka Gain
ta Time constant, sec
rex Excitation system resistance

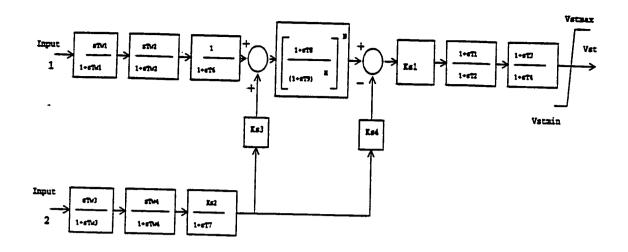
mexs Manual excitation control with field circuit resistance

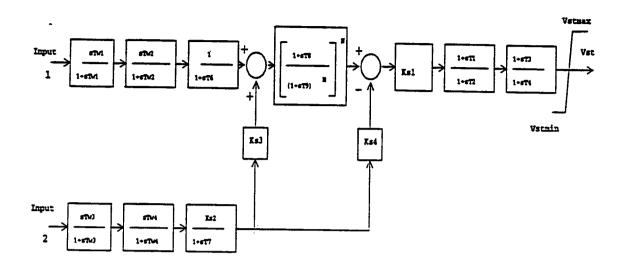

```
ls
           Synchronous reactance
1p
           Transient reactance
ra
           Stator resistance, p.u.
tpo
           Transient rotor time constant
h
           Inertia constant, sec
đ
           Damping factor, p.u.
se1
           Saturation factor at 1 p.u. flux
se2
           Saturation factor at 1.2 p.u. flux
vt
           Voltage threshold for tripping (default = 0), p.u.
tv
           Voltage trip pickup time (default = 999), sec.
ft
           Frequency threshold for tripping (default = 0), Hz
tf
           Frequency trip pickup time (default = 999), sec.
VI
           Voltage at which reconnection is permitted
             (default = 1.2), p.u.
tvr
           Time delay for reconnection (default = 999), sec.
acc
           Acceleration factor for initialization
```


motorl Induction machine modeled with rotor flux transients

pul	Fraction of constant-power load to be represented by this motor model
ls	Synchronous reactance
lp	Transient reactance
ra	Stator resistance, p.u.
tpo	Transient rotor time constant
h	Inertia constant, sec
đ	Damping factor, p.u.
vt	Voltage threshold for tripping (default = 0), p.u.
tv	Voltage trip pickup time (default = 999), sec.
tbkr	Circuit bker operating time (default = 999), sec
acc	Acceleration factor for initialization

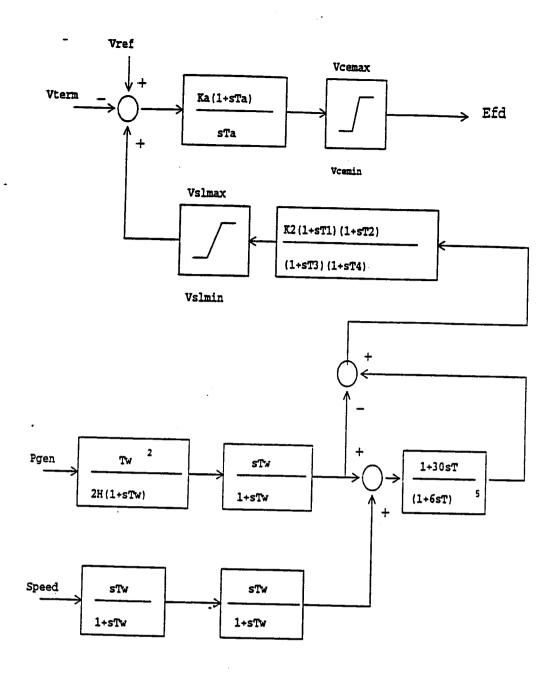
motorw Motor model for use as a component of general purpose substation load


Reactive

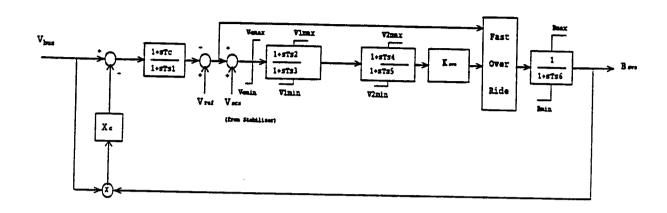

j Control mode 1 for reactive power 0 for power factor kp Proportional gain ki Reset gain max Output limit

Power Factor

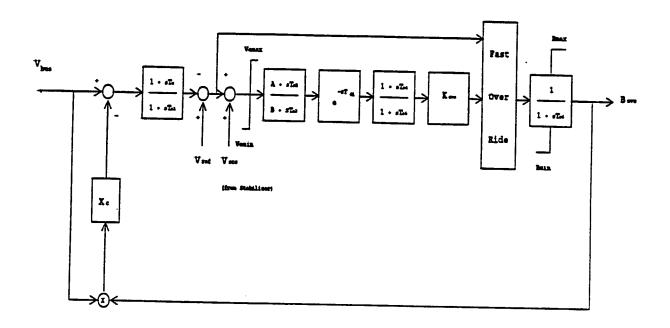
pfqrg Power factor / Reactive power regulator



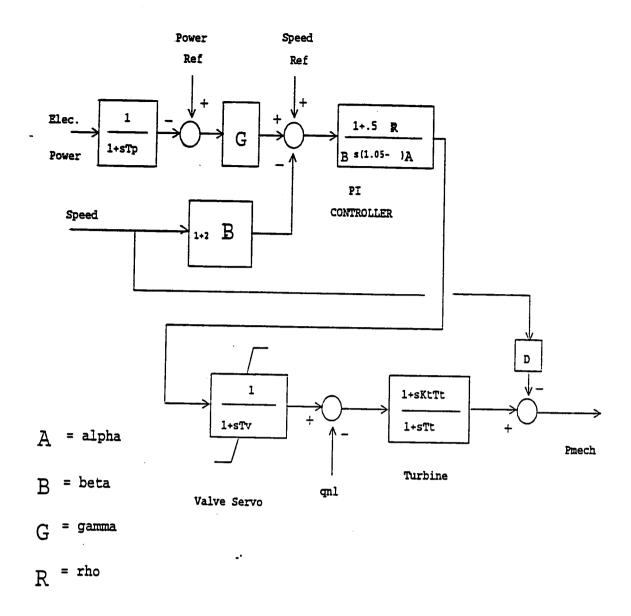

```
j1
            Input signal #1 code
k1
           Input signal #1 remote bus number
j2
           Input signal #2 code
k2
           Input signal #2 remote bus number
tw1
           First washout on signal #1, sec
tw2
           Second washout on signal #1, sec
tw3
           First washout on signal #2, sec
tw4
           Second washout on signal #2, sec
t6
           Time constant on signal #1, sec
t7
           Time constant on signal #2, sec
ks2
           Gain on signal #2
ks3
           Gain on signal #2
ks4
           Gain on signal #2
t8
           Lead of ramp tracking filter
t9
           Lag of ramp tracking filter
           Order of ramp tracking filter
n
m
           Order of ramp tracking filter
ks1
           Stabilizer gain
t1-t4
           Lead/lag time constants, sec
vstmax
           Stabilizer output max limit, p.u.
vstmin
           Stabilizer output min limit, p.u.
```



```
jl
           Input signal #1 code
k1
           Input signal #1 remote bus number
j2
           Input signal #2 code
k2
           Input signal #2 remote bus number
tw1
           First washout on signal #1, sec
tw2
           Second washout on signal #1, sec
tw3
           First washout on signal #2, sec
tw4
           Second washout on signal #2, sec
t6
           Time constant on signal #1, sec
t7
           Time constant on signal #2, sec
ks2
           Gain on signal #2
ks3
           Gain on signal #2
ks4
           Gain on signal #2
t8
           Lead of ramp tracking filter
t9
           Lag of ramp tracking filter
n
           Order of ramp tracking filter
m
           Order of ramp tracking filter
ks1
           Stabilizer gain
t1-t4
           Lead/lag time constants, sec
vstmax
           Stabilizer output max limit, p.u.
```

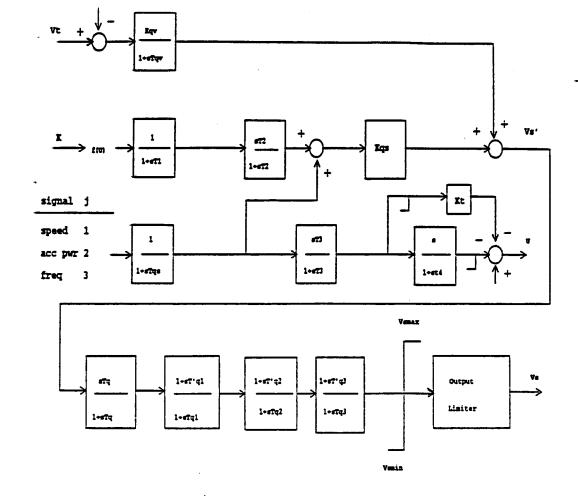
Psssb Dual input Power System Stabilizier (IEEE type PSS 2A) +Voltage Boost signal Transient Stabilizier and Voutoff


```
ka
           Voltage regulator gain
ta
           Voltage regulator reset time constant, sec
           Minimum exciter output voltage, pu
vcemin
           Maximum exciter output voltage, pu
Vcemax
tw
           Stabilizer washout time constant, sec
m
           Inertia time constant (2H) for stabilizer, sec
k2
           Stabilizer gain
t1
           Stabilizer lead time constant, sec
t2
           Stabilizer lead time constant, sec
t3
           Stabilizer lag time constant, sec
           Stabilizer lag time constant, sec
t4
vslmin
          Minimum stabilizer output, pu
vslmax
          Maximum stabilizer output, pu
t
           1./(System Frequency) [0.01667], sec
```

silco5 Canadian GE Silco5 excitation system model


```
ts1
            Voltage transducer time constant, sec
 vemax
            Maximum error signal, pu
 ts2
            Lead time constant, sec
 ts3
            Lag time constant, sec
 a
            Lead gain, must be 1.0
 b
            Lag gain, must be 1.0
 ts4
            Lead time constant, sec
 ts5
            Lag time constant, sec
ksvs
            Gain, per unit b/per-unit v
            Discontinuous control gain, pu
ksd
bmax
            Maximum admittance, pu
bpmax
           Maximum controlled admittance, pu
bomin
           Minimum controlled admittance, pu
bmin
           Minimum admittance, pu
ts6
           Firing control time constant, sec
ďv
           Threshold for switched control, pu
ХC
           Line drop compensating reactance, p.u.
tc
           Transducer lead time constant, sec.
           Threshold for added shunt switching, pu
dv2
bshunt
           Additional switched shunt admittance, pu
           Time delay for switching added shunt, sec
tdelay
bias
           Constant "bias" shunt admittance, pu
j1
           First stabilizer input signal code
k1
           Stabilizer input source bus, from
k2
           Stabilizer input source bus, to
j2
           Second stabilizer input signal code
ks1
           Stabilizer gain
ts7
           Stabilizer time constant, sec
ts8
           Stabilizer time constant, sec
```

svcwsc Static VAR System model corresponding to WSCC program SVC model, including stabilizer element


tsl Voltage transducer time constant, sec Maximum error signal, pu vemax Lead time constant, sec ts2 ts3 Lag time constant, sec a Lead gain, must be 1.0 b Lag gain, must be 1.0 ts4 Lead time constant, sec ts5 Lag time constant, sec ksvs Gain, per unit b/per unit v ksd Discontinuous control gain, pu bmax Maximum admittance, pu bpmax Maximum admittance under continuous control, pu Minimum admittance under continuous bpmin control, pu bmin Minimum admittance, pu ts6 Firing control time constant, sec đv Error threshold for discontinuous control, pu Line drop compensating reactance, p.u. XC tc Transducer lead time constant, sec. td1 Controller delay, sec.

vwscc WSCC basic static VAR system model

Power transducer time constant, sec alpha Gain setting beta Reset gain setting rho Proportional gain setting gamma Droop setting, pu gain Turbine gain Valve actuator time constant, sec tv velmax Maximum valve velocity, pu/sec Maximum valve opening, pu gmax gmin Minimum valve opening, pu Valve opening at no load, pu gnl tturb Turbine time constant, sec đ Turbine damping factor non-zero for diesel, 0 for steam/gas kt

tp


```
j
             Input signal code:
                    1 for shaft speed
                    2 for accelerating power
                    3 for bus frequency
             Voltage deviation gain
kqv
tqv
             Voltage transducer time constant, sec
             Main input signal gain
kqs
             Main input signal transducer time constant, sec
tqs
tq
             Stabilizer washout time constant, sec
tql
             Lag time constant, sec
             Lead time constant, sec
tpql
             Lag time constant, sec
tq2
tpq2
             Lead time constant, sec
             Lag time constant, sec
tq3
             Lead time constant, sec
tpq3
             Maximum output signal, pu
VSMax
             Voltage deviation level for stabilizer
vcutoff
                   cutout, pu
vslow
             Minimum output signal, sec
t1
             Frequency boost signal transient stabilizer lag
t2
             Frequency boost signal transient stabilizer
                    washout time constant, sec
t3
             Frequency boost signal transient stabilizer
                    Trigger washout time constant, sec
kboost
             Transient stabilizer boost signal, pu
dwl
             Speed deviation 1 for trigger, pu
.dw2 _
             Speed deviation 2 for trigger, pu
ddwt
             Acceleration value for trigger, pu
tdelay
             Trigger delay, sec
             Frequency boost signal transient stabilizer
                    Trigger circuit lag, sec
```

wsccst WSCC Power System Stabilizer

APPENDIX B

DEFINITIONS

BASE VALUES FOR PER UNIT PARAMETERS

The GE dynamic simulation program, whose data sheets and parameter lists are shown in Appendix A, requires that all per unit parameters and per unit variables are specified with respect to base values equal to generator nameplate rated values.

The bases to be used in converting measured electrical values and mechanical power of electrical machine rotors (volts, amps, ohms, and other physical-unit measures) to per unit values are as follows:

Parameter	Base Value	Name of
or Variable		Base Value
Electrical MVA	Generator rated MVA	Sbase
Electrical MW	Generator rated MVA	Sbase
Electrical MVAR	Generator rated MVA	Sbase
Shaft speed	Generator rated speed	Wbase
Electrical Torque	Generator rated torque Sbase / Wbase	Tbase
Mechanical Power	Generator rated MVA	Sbase
Mechanical Torque	Generator rated torque	Tbase
Stator AC Voltage	Generator rated voltage	Vsbase
Stator AC Current	Isbase=Sbase/(1.732*Vsbase)	Isbase
Field DC Current	DC current in field winding for AC voltage equal to Vsbase on air gap line when on open circuit at rated speed	Ifbase
Field DC Voltage	Ifbase * (DC resistance of field winding when hot)	Vfbase

The bases to be used for variables and parameters in excitation systems and associated subsystems such as power system stabilizers must be those given above.

The bases to be used for mechanical positions (such as valve openings) and other signals in governors and turbine controls should be the full-range values of these quantities. These base values are frequently related to the generator MVA base by gains other than unity.

Example:

The following example illustrates the per unit conventions:

A hydro generator is observed to require a turbine gate opening of 3 inches at speed-no-load and a gate opening of 21 inches at rated generator output. The open circuit magnetization curve shows the air gap line field current at speed-no-load and 14.4Kv to be 420 Amps, and the actual field current in this condition to be 441 Amps. The field voltage in this speed-no-load condition is 145 volts

The full stroke of the servomotor is 25 inches. The generator nameplate ratings are

125 MVA 0.8 power factor 14.4 Kv 1050 Amps DC 350 Volts DC

The turbine nameplate ratings are

120 Ft head 1750000 Hp

The excitation transformer and rectifier can provide a maximum DC field voltage of 600V

The base values are as follows

Sbase = 125 MVA Vsbase = 14.4 Kv Isbase = 125e6./(1.732*14.4e3) = 5012 Amps Ifbase = 420 Amps Vfbase = 350 * 420/1050 = 140 Volts Stroke = 25 inches

Running at speed no load the per unit variables are

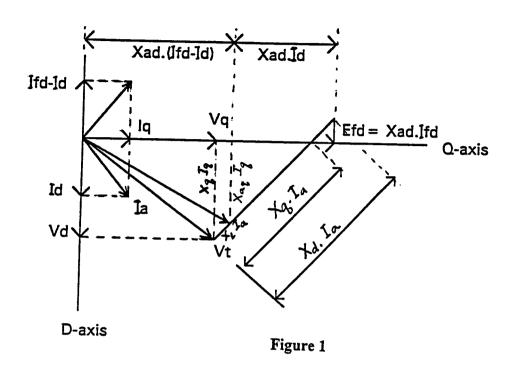
MVA = MW = MVAR = 0.0 Stator voltage = 1.0 Stator current = 0.0 Field current = 441 / 420 = 1.05 Field voltage = 145 / 140 = 1.036 Gate opening = 3 / 25 = 0.12 Running at rated conditions the per unit variables are

MVA (= 125) = 1.0 MW (= 100) = 0.8 MVAR(=60) = 0.6 Stator voltage = 1.0 Stator current = 1.0 Field current = 1050 / 420 = 2.5 Field voltage = 350 / 140 = 2.5 Gate opening = 21 / 25 = 0.84

The maximum per unit excitation voltage is Max Excitation Voltage = 600 / 140 = 4.3

Note that:

The per unit field voltage at speed-no-load is less than the per unit field current, but the per unit values of the field variables are equal at rated conditions. This is because the base value of field voltage is stated for rated conditions with the field winding hot while the field winding was cool when the speed-no-load measurements were taken.


Rated generator power output is *not* one per unit because the rated power factor is not unity.

The turbine ratings are information items only; they are not used in establishing per unit bases or values. The power rating of the turbine (175000*0.746 = 130.6MW) is substantially greater than the 100MW rated output of the generator and sufficient to run it at rated MVA and unity power factor at a head slightly below rated. (Such turbine sizing is quite common in hydro plants whose head variations can be large, but would be unusual in a thermal plant).

The gain relating gate position to turbine power must be

At = Change in per unit power
Change in per unit gate

= 1/(0.84 - 0.12) = 1.39

SYNCHRONOUS MACHINE PHASOR DIAGRAM

Reference: B.Adkins, Sugiyama et.al

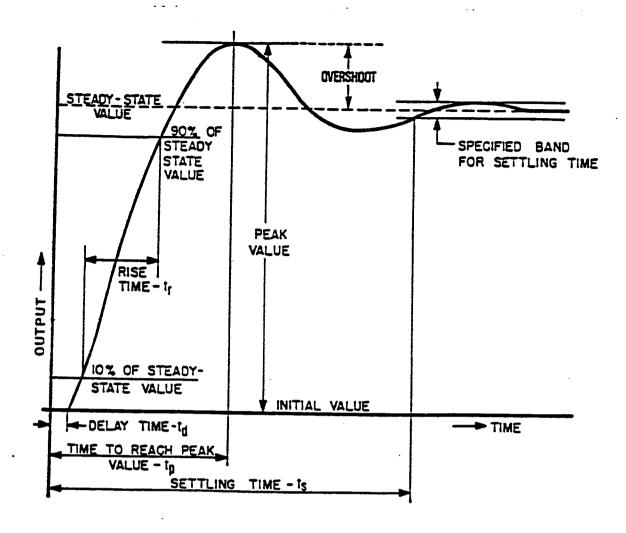
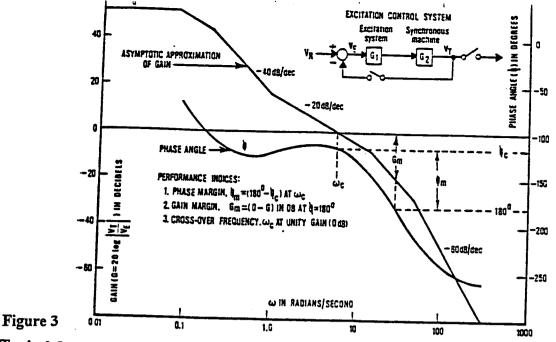



Figure 2

Typical Transient Response of a Feedback Control System to a Step Change in Input

Note: Per IEEE 421.2 -1990, for a small step change applied at the voltage regulator reference, an acceptable transient response is one having no more than two overshoots with a maximum overshoot of about 15%.

Reproduced with permission by the Institute of Electrical and Electronics Engineers, Inc. from the IEEE Std. 421.2-1990, Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems.

Typical Open-Loop Frequency Response of an Excitation Control System with the Synchronous Machine Open-Circuited

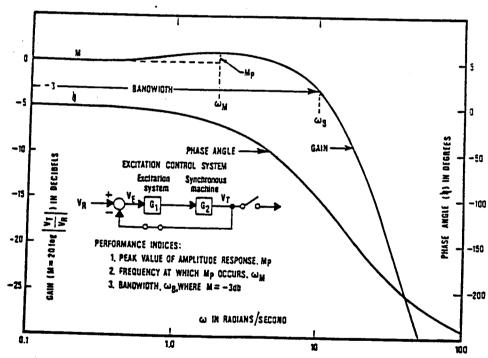


Figure 4

Typical Closed-Loop Frequency Response of an Excitation Control System with the Synchronous Machine Open-Circuitedp

Reproduced with permission by the Institute of Electrical and Electronics Engineers, Inc. from the IEEE Std. 421.2-1990, Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems.

APPENDIX C

SUBMISSION FORMS

All submittals shall be made to:

WSCC Technical Staff University of Utah Research Park 540 Arapeen Drive, Suite 203 Salt Lake City, Utah 84108-1288

Generator Excitation System Summary

			Ivoics							
			*						-	
		Conordo	MW						-	
		-), VHZ,						1	
		Auxiliary Control	PSS, UEL, OEL, LD, VHZ, PF.Other							
Date:		Auxi	PSS, UEI						aation (megawatts) I Volts (KV me)	r full load
			Max	=					THZ - Volts per Hertz Compensation fW - Generator Rated Output (megawatts) t - Geneator Rated Terminal Volts (KV) xciter Volts Base: - Open circuit at Vt Max: - Maximum Boost (short time)	ated generato
	í	olts	Rated						Volts per H Generator E Geneator R Is Open circui	onfunitous at 1
rson		Exciter Volts	Base						VHZ - V MW - G Vt Vt Exciter Volts Base: O Max: - O	Kated:- C
Contact Person			Model							
	Fax:		Mfg. (Type)						zer uiter ter	
			Unit #						Power System Stabilizer Under Excitation Limiter Over Excitation Limiter State L for Limiter and P for Protection	•
.iv			Location Unit #						Pow - Und - Ove - State and	•
Utility:	Phone:								PSS UEL OEL Note:	,

TYPICAL SUBMITTAL FOR INFORMATION

Generator Excitation System Summary

Utility:		Contact	Person			Date:					
Phone:	Fax:					' I					
			Excite	Exciter Volts		γ	Auxiliary Control	rol	Generator	rator	Notes
Location Unit #	Mfg. (Type)	Model	Base	Rated	Max	PSS, UE	PSS, UEL, OEL, LD, VHZ, PF, Other	D, VHZ,	MW	Ϋ́	
Plant A #1	G.E.	Silco5	100	250	800	(T) (T)		OEL(L)	150	16.0	
Plant A #2	99		100	250	450	UEL(L)		OELL	150	16.0	
Plant A #3	Hitachi	123	100	250	800	OEL(P) trips to manual	UEL(L)		150	16.0	
Plant A #4	Westinghouse	Rapicon	120	250	006	PSS	UEL(L)	OEL(L)	300	18.0	
Plant A #5	3		100	250	006	PSS	UEL(L)	OEL(L)	300	18.0	
Plant A #6	3		100	250	006	PSS	UEL(L)	OEL(L)	300	18.0	
Plant B #1	Brown Boveri		105	150	400	UEL(L)			75	14.4	
Plant B #2	English Electric		150	250	650	UEL(L)			75	14.4	
Plant B #3	Hitachi		100	250	650	UEL(L)			100	14.4	

Power System Stabilizer Under Excitation Limiter Overexcitation Limiter State L for Limiter PSS Vet Note:

and P for Protection

Line Drop Compensation Power Factor/VAR Controller U.F

Volts per Hertz Compensation
 Generator Rated Output (megawatts)
 Geneator Rated Terminal Volts (KV)

VHZ - VG MW - Ge Vt - Ge Exciter Volts

Base: - Open circuit at Vt
Max: - Maximum Boost (short time)
Rated:- Continuous at rated generator full load
and power factor.

Turbine Governor System Summary

		Notes	6301					
		٩	Speed					
Date:		Turkine	Rated MW					
			Max	_				
		rnor	Rated					
Person		Governor	Mech. PID Digital					
Contact Person			Model					
	Fax:		Mfg.					
Utility:	Phone:		Location Unit#					

TECHNICAL DATA, MODELS AND BLOCK DIAGRAMS

Typical block diagrams from stability programs based on IEEE and WSCC models have been included to assist the test and modeling engineers. The appropriate models should be selected and copied for each unit. Model data should be entered in each model block diagram sheet after validation.

If other models are used, these should be adequately described by a block diagram and corresponding data tables.

It is recognized that for some of the older units such data may be incomplete or unavailable. After model validation, all assumptions made in the derivation of the model should be clearly stated in the documentation.

For each model validated, copies of the actual test recording and the corresponding model computer simulation should be submitted to WSCC.

APPENDIX D

EXAMPLE OF TEST PLAN FOR GENERATOR EXCITATION SYSTEMS AND TURBINE GOVERNOR CHARACTERISTICS

THIS DOCUMENT WAS PREPARED FOR A PREVIOUS PROJECT. ITS CONTENT, STYLE AND FORMAT WERE APPROPRIATE FOR THE CIRCUMSTANCES OF THAT PROJECT AND MAY NOT BE SO FOR NEW PROJECTS. IT IS PROVIDED HERE AS AN ILLUSTRATION AND FOR GENERAL INFORMATION ONLY

Example of Test Plan

Measurement of Generator-Excitation System-Governor Characteristics

1.	Introdu	ction

1.1 Objectives

This to	est plan c	overs work	to be do	ne by the	engineer	responsible	for
testing	g and data	validation	(ENGINE	ER) at the	e	and	TOT
plants	of		(OWNER)	between		and	
1997.	The objec	tives of th	e work a	re to:			

- Verify the correct operation of the excitation controls and turbine governors of the OWNERs generating units
- Suggest revisions of control settings or modifications that might be called for or advantageous
- Verify the modeling of the units in the WSCC system studies data base

1.2 Schedule

This test plans is written with respect to a single steam or gas turbine unit. The intention is that the work outlined in this plan will be executed on each EPC unit in sequence. The suggested sequence is:

Unit	Date
Unit 1	
Unit 2	
etc	etc

Unless dictated differently by system dispatch, test setup will commence each day at about 0700 and should be complete by 0900. Testing will commence at about 0900 and should be complete by 1300. Signal processing and plotting will be done each day as time permits.

1.3 Staff and Procedure

ENGINEER assumes that OWNER electrician and plant engineering staff will be available each day from 0700 until the day's testing is complete. OWNER staff will have to know the location of plant manuals, of test signal pickup points, and of the protection system of each generator. All connections of test leads to OWNER equipment will be made by OWNER staff. All operation of ENGINEER test equipment will be done by ENGINEER staff. The ENGINEER will consult at all times with OWNER

engineering staff and OWNER station operators in the execution of the tests. Experience has shown that it is most effective for the ENGINEER to discuss the sequencing of each test directly with the OWNER station operator, subject tot he agreement of OWNER engineers and supervisors.

1.4 Equipment required from OWNER

OWNER will provide shielded twisted pair cable for test leads from the signal points to the ENGINEER terminal blocks on the test table.

OWNER will provide a test table (with a wood or Formica top).

OWNER will provide several "Fluke" type digital multimeters.

OWNER will provide an HP Laserjet 4 printer. (or equivalent)

Overall Test Procedure

ALL NUMERIC DATA IN THIS SECTION APPLIES TO A GENERATOR RATED 100MVA. Numeric values for generators of different sizes will be scaled in proportion to MVA rating.

The sequence of operations of each unit under test will be as follows:

Connect test leads to OWNER signal points. ENGINEER prefers to make test connections with the unit either shut down or at speed no load; but OWNERS practices will dictate the manner of this work. In most cases all test leads can be laid out and prepared with the unit in normal service so that connections can be made quickly when the unit is brought out of normal serive for the tests

Unit off line and rotating at normal speed with main and field circuit breakers open

Defeat minimum power or reverse power relays if necessary in order to achieve near-zero MW operation.

Close field circuit breaker and bring unit to normal voltage, open circuit

Calibrate ENGINEER test instruments

Do open circuit magnetization curve test (this test may be done at any convenient point in the sequence, though there is some advantage to doing it early)

Return to normal voltage, open circuit

Trip the field circuit breaker. Record all test signals for 30 seconds

1

This test is made only where the type of excitation system makes it appropriate; it is particularly useful in hydro plants where a DC exciter has been retained with an old voltage regulator being replaced by a Basler-type unit.

Close the field circuit breaker and return to normal voltage

Synchronize and stabilize the unit as close as possible to zero MW

Go to zero MW and 20 MVAR underexcited Do trip test number 1

Synchronise and go to zero MW and 30 MVAR underexcited Excitation system in manual mode Do trip test number 2

Synchronize and go to zero $\dot{\text{MW}}$ and 20 MVAR underexcited Excitation system in automatic mode Do trip test unumber 3

Synchronize and go to zero MW and 35 MVAR underexcited Excitation system in automatic mode Do trip test number 4

Synchronize and go to MW output of 10 to 30 percent of nameplate rating and underexcited MVAR depending on results of tests 1,2
Excitation system in manual mode
Do trip test number 5

Synchronize and go to a small "motoring" MW loading and zero MVAR Excitation system in automatic mode
Do trip test number 6

NOTE: MVAR loadings in trip tests after the first will be decided on the basis of the initial test.

Open Circuit Magnetization Curve Test

Measure generator field current as a function of generator open circuit terminal voltage.

Generator at rated rpm, main circuit breaker open, excitation system in MANUAL, voltage at normal startup value.

Reduce excitation to the lowest possible value, preferrable approximately 30 percent of rated voltage or below.

Stabilize. Read stator voltage, field current, and field voltage.

Increase excitation in steps, always increasing and not "backing up".

Make readings at each step.

Reduce excitation in steps, not backing up.

Make readings at each step down to the lowest attainable voltage.

- 4. Trip Test

Load the generator to the required MW and MVAR loading. (MW should not exceed 30 percent of nameplate rating) (MVAR should not be greater than 40 percent of nameplate rating underexcited or greater than 25 percent of nameplate rating overexcited) (If generator is overexcited excitation system should be in AUTOMATIC mode)

Put the excitation system in the required test mode

Trip the main circuit breaker.

Generator voltage will fall in an underexcited test or rise in an overexcited test.

Bus voltage will rise slightly in an underexcited test or fall slightly in an overexcited test.

Record all test signals for 15 to 30 seconds as indicated by preliminary work.

5. Test Connections

All signal levels are typical values

Stator voltage	110 - 125 VAC	take from stator PT's one phase is essential - it may be desirable to record all three phase voltages
Stator current	0 - 5 Amps AC	take from ENGINEER clip-on transducer on CT secondary circuit
Main field voltage	0 - 500 VDC	take from field voltmeter via resistive potential divider
Main field current	0 - 100 mv	take from main field current shunt
Voltage regulator output voltage	0 - 200 VDC	take from excitation system cubicle via resistive potential divider
Voltgae regulator	0 - 10 Amps DC	take from ENGINEER clip-on transducer output current ***
Amplidyne output voltage ***	0 - 200 VDC	take from amplidyne terminals via resistive potential divider

*** Regulator output signals are selected based on their presence and accessibility in each partcular exitation system

APPENDIX E

EXAMPLE OF GENERATOR EXCITATION SYSTEM AND POWER SYSTEM STABILIZER TEST PROCEDURE

THIS DOCUMENT WAS PREPARED FOR A PREVIOUS PROJECT. ITS CONTENT, STYLE AND FORMAT WERE APPROPRIATE FOR THE CIRCUMSTANCES OF THAT PROJECT AND MAY NOT BE SO FOR NEW PROJECTS. IT IS PROVIDED HERE AS AN ILLUSTRATION AND FOR GENERAL INFORMATION ONLY

GENERATOR EXCITATION SYSTEM AND POWER SYSTEM STABILIZER TEST PROCEDURE

1 PURPOSE

- 1.1 Section 6.1- Verify the per-unit gain of the excitation/generator system HP.
- 1.2 Section 6.2 Check the gain and frequency response of the excitation / generator system in an "Open Loop Test" HP.
- 1.3 Section 6.3 Set and verify the Power System Stabilizer (PSS) gain and time constants HP.
- 1.4 Section 6.4 Verify the gain and frequency response of the PSS, Voltage Regulator, and Generator in an "Open Loop Test" HP.
- 1.5 Section 6.5 Final gain setting for stable operation HP.
- 1.6 Section 6.6 Final electrical and tripping limits settings HP.
- 1.7 Section 6.7 Overall System Stability Test HP.
- 1.8 Section 6.8 Verify the per-unit gain of the excitation/generator system LP.
- 1.9 Section 6.9 Check the gain and frequency response of the excitation / generator system in an "Open Loop Test" LP.
- 1.10 Section 6.10 Set and verify the Power System Stabilizer (PSS) gain and time constants LP.
- 1.11 Section 6.11 Verify the gain and frequency response of the PSS, Voltage Regulator, and Generator in an "Open Loop Test" LP.
- 1.12 Section 6.12 Final gain setting for stable operation LP.
- 1.13 Section 6.13 Final electrical and tripping limits settings LP.
- 1.14 Section 6.14 Overall System Stability Test LP.
- 1.15 Section 6.15 Verify Underexcited Reactive Ampere Limit HP
- 1.16 Section 6.16 Verify Underexcited Reactive Ampere Limit LP
- 1.17 Section 6.17 Test Maximum Generator Output HP
- 1.18 Section 6.18 Test Maximum Generator Output LP

2 REFERENCES

- 2.1 General Electric Instruction For Thyristor Excitation System GEK 14989B.
- 2.2 General Electric Co. Instruction For PSS GEK-14992D and System Drawings.
- 2.3 General Electric Co. Instruction For Underexcited Reactive Ampere Limit Panel GEK 4716.
- 2.4 IPAC Frequency Transducer Instruction I.B. 750.1
- 2.5 Western Systems Coordinating Council Test Procedure for PSS.

3 PREREQUISITE CONDITIONS

- 3.1.1 Unit operating on line at approximately 100% power level, normal VArs.
- 3.1.2 Modifications to PSS control, if required, completed.
- 3.1.3 The following points will be monitored during the PSS Tests:
 - .1 Generator Terminal Voltage (V_{er})
 - .2 Generator Field Voltage (V_{st})
 - .3 Power System Stabilizer Output (V_{per})
 - .4 Generator Power Change (ΔMW)
 - .5 Generator VAr. Change (ΔMVAR)
- 3.1.4 Phone communication between the Excitation Switchgear and the Control Room.

4 TEST EQUIPMENT

- 4.1 Two (2) Digital Voltmeters.
- 4.2 One (1) 6-pen Gould-Brush Recorder.
- 4.3 One (1) 500 Vdc to 5 Vdc Transducer.
- 4.4 Four (4) Isolation Amplifiers.
- 4.5 One (1) Input / Output Signal Transducer.
- 4.6 One (1) Controller / Analyzer.
- 4.7 One (1) Watt / VAr Transducer

5 LIMITS AND PRECAUTIONS

- 5.1 As outlined in this procedure.
- 5.2 Ensure all instrumentation is ungrounded.

6 PROCEDURE

- 6.1 Per-Unit Gain Test of the HP Excitation / Generator System:
 - 6.1.1 RECORD all As Found potentiometer settings in the PSS Data sheets.
 - 6.1.2 Unit approximately 100% load, normal VArs, PSS OFF
 - 6.1.3 LP Excitation System in TEST control mode.
 - 6.1.4 LIFT the Frequency Transducer input at L-1 and L-2.
 - 6.1.5 RESET the mechanical limits on L1M to maximum.
 - 6.1.6 RESET the positive and negative Electrical Limits P7 and P8 to 10.
 - 6.1.7 LIFT the output amplifier LA4 input at D' and CONNECT the Signal Output Transducer to the Analyzer Channel 1 input and to the input of LA4 terminal D' and signal ground to L-8.
 - 6.1.8 CONNECT the Generator Terminal Voltage PT secondary to the 3¢ Voltage Transducer. Connect the output of the transducer through the isolation amplifier to the Analyzer Channel 2 Input and the recorder.
 - 6.1.9 CONNECT the PSS Output L-6 to L-8 to the Recorder.
 - 6.1.10 SET the gain pot P6 to 000 for unity gain.
 - 6.1.11 With the Voltage Regulator in Auto, and a ZERO voltage on the output of the PSS, place the PSS in the ON mode.

NOTE

THE VALUES OBTAINED IN THIS TEST WILL BE USED TO CALCULATE THE GAINS AND THE LIMIT SET POINTS FOR THE SYSTEM AT THE END OF THE TEST.

6.1.12 Slowly apply a DC voltage signal via the BIAS control to the output amplifier. Apply a (+)1.00 Vdc signal from the PSS and check that an approximate 1% change in Generator voltage is recorded. If the terminal voltage change is not correct, adjust the output calibration potentiometer P14 to obtain the desired change.

$$V_{gt} =$$
_____Vac @ $V_{pes} =$ _____Vdc $V_{gt} =$ _____Vdc $V_{gt} =$ _____Vdc

6.1.13 CHECK that a (-)1.00 Vdc output from the PSS will change the generator terminal voltage by 1%.

$$V_{gt} =$$
_____Vac @ $V_{pes} =$ ____Vdc $V_{gt} =$ _____Vdc

- 6.1.14 RECORD the change in terminal voltage, VArs, field voltage and current for the PSS output change.
- 6.1.15 REDUCE the BIAS voltage to zero, and turn the PSS OFF.
- Gain and Frequency Response Test of the Excitation / Generator System in an "Open Loop Test". (GENERATOR LOOP TEST)
 - 6.2.1 Create Data Files and set controller options.
 - 6.2.2 Set the controller to cause the generator terminal voltage to swing at between 0.25 and 0.5% of its rated or set voltage, and at a rate between 0.05 and 3.0 Hertz.
 - 6.2.3 Using the previous test connections, with output set on oscillator, place the PSS ON.
 - 6.2.4 Initiate the measurement cycle, and repeat as required to obtain the required Unit Frequency Response.

NOTE: THE AMPLITUDE INFORMATION IS PLOTTED IN DECIBELS:

dB = 20
$$\log_{10}$$
 Change in $V_{\pi}N_{\pi \text{ base}}$
Change in $V_{\text{pss}}N_{\text{pss} \text{ base}}$

Change in $V_{\rm st}$ = the amount of voltage change due to the voltage variation for the PSS.

$$V_{gtbase} = 115 \text{ Vac}$$

Change in V_{per} = The amount of test signal voltage change

$$V_{pss base} = (V_{gt} @ V_{pss} = 1.0 \text{ Vdc}) - (V_{gt} @ V_{pss} = 0.0 \text{ Vdc})$$

6.2.5 Reduce the Test signal to zero, and place the PSS in OFF.

- 6.3 Power System Stabilizer Time Constant and Gain Adjustment. (STABILIZER LOOP TEST)
 - 6.3.1 DISCONNECT the Analyzer Output from LA4 terminal D' and RECONNECT the lead lifted at LA4 D'.
 - 6.3.2 CONNECT the Signal Output transducer to the PSS input at L-1 and Common L-8 and to the Analyzer input Channel 1.
 - 6.3.3 DISCONNECT the output of the 3φ voltage transducer from the Analyzer Channel 2 input.
 - 6.3.4 CONNECT the output of the PSS, L-6 and L-8, to the Channel 2 input of the Analyzer.
 - 6.3.5 ADJUST the time constants of the PSS according to the results of the "Open Loop Test". The fundamental function of the phase shifting network in the PSS is to compensate for the phase lag in the response of the excitation / generator system. Adjustment should thus be made to offset the phase lag exhibited by the machine.

NOTE

THE TIME CONSTANTS CAN BE APPROXIMATED MOST READILY BY SELECTING THE PHASE LEAD TIME CONSTANTS AT THE FREQUENCY OF WHICH THEY WOULD PROVIDE 45 DEGREES OF PHASE ADVANCE. THE FREQUENCY TO DETERMINE THE SELECTION OF THIS PHASE ADVANCE TIME CONSTANTS IS THAT POINT WHERE THE GENERATOR / EXCITATION SYSTEM OVERALL RESPONSE LAGS THE INPUT BY 90 DEGREES. THE WASHOUT TIME CONSTANT SHOULD BE SET BETWEEN 1 AND 30 SECONDS.

- 6.3.6 APPLY a sine wave signal from the Analyzer causing the PSS output voltage to swing at least 0.5 V_{pp} , but not more then 2.0 V_{pp} , starting at 0.05 Hz. and ending at 100 Hz.
- Gain and Frequency response Test of the Generator / Excitation System and PSS in an "Open Loop Test". (OVERALL LOOP TEST)
 - 6.4.1 DISCONNECT the Analyzer Channel 2 Input from the PSS Output L-6 and L-8. Connect the Output of the 3φ Voltage Transducer to the Analyzer Channel 2 Input.
 - 6.4.2 CREATE Data Files and set controller options.

- 6.4.3 Set the controller to cause the generator terminal voltage to swing at between 0.25 and 0.5% of its rated or set voltage, and at a rate between 0.05 and 3.0 Hertz.
- 6.4.4 With the Voltage Regulator in AUTO mode, and zero voltage on the output of the PSS, place the PSS in the ON mode.
- 6.4.5 Initiate the measurement cycle, and repeat as required to obtain the required System Frequency Response.
- 6.4.6 Reduce the Analyzer Input signal to zero, and place the PSS in OFF mode.
- 6.5 Final Gain Setting For Stable Operation
 - 6.5.1 REMOVE the Signal Output transducer from L-1 and L-6. (Leave PSS output to recorder connected.
 - 6.5.2 RECONNECT the wires lifted to L-1 and L-2 to connect the IPAC frequency transducer.
 - 6.5.3 CHECK that the output of the PSS is at or operating around zero. Check that the gain adjustment control P6 is at "000".
 - 6.5.4 Place the PSS in the ON mode.
 - 6.5.5 SLOWLY increase the gain of the output amplifier, by adjusting P6, until sustained oscillations are detected. These oscillations may occur in the range of 1 to 3 Hz. Oscillations will be seen in the MWatts, MVArs, terminal voltage, filed voltage and PSS output. As soon as these oscillations are detected the PSS should be placed in the OFF mode.
 Note P6 dial position.
 - 6.5.6 LIFT the input to the LA4 board at D'.
- 6.6 Final Electrical and Tripping Settings
 - 6.6.1 CALCULATE the PSS output required to produce a 5% change in generator terminal voltage and record.

Example: If 1.0 Vdc from the PSS output changed the terminal voltage by 0.8% on the $V_{\rm pt\ base}$, then a \pm 5% terminal voltage change per volt from the PSS output would be

$$1V \times \pm 5\% = \pm 6.25 \text{ V}.$$

Calculated 5% Limit Output Vdc

- 6.6.2 RESET the electrical output limits by applying a DC voltage to D' on the LA4 Board it Board so that the output voltage at L-6 to L-8 measures 10 Vdc. Adjust P7 to obtain the calculated output voltage above. Repeat with a -10 Vdc input and adjust P8 for the negative calculated output voltage above.
- 6.6.4 ADJUST the tripping time delay relay T1R so that when the output of the PSS reaches the tripping limits, positive or negative, a period of two (2) seconds will elapse before the PSS will trip. This is done by applying a voltage to the LA4 Circuit Board D' that is greater than the tripping voltage and adjusting the T1R dial. Record the Final Setting.
- 6.6.5 REMOVE the Signal Output transducer from LA4 terminal D' and RECONECT the lifted leads.
- 6.7 Overall System Stability Test
 - 6.7.1 Have operations personnel place the HP excitation in TEST.
 - 6.7.2 At the excitation housing, CONNECT a 50 kohm switchable potentiometer across Voltage Adjust Potentiometer A201P with the resistance set for 50 kohms and the switch closed.
 - 6.7.3 Check that the 3φ Voltage transducer and PSS outputs are connected to the recorder.
 - 6.7.4 Have operations personnel place the HP excitation in AUTO control.
 - 6.7.5 With the recorder operating, the excitation in AUTO, and the PSS in the OFF mode, adjust the 50 kohm potentiometer to obtain a 1% decrease in generator terminal voltage.

- 6.7.6 Alternately OPEN and CLOSE the switch to introduce step changes into the voltage regulator / excitation system with the PSS out of service. Review the chart recordings which should indicate the dynamic performance of the system.
- 6.7.7 After the system has stabilized, have operations personnel place the PSS ON.
- 6.7.8 Repeat the above step change tests by alternately, OPENING and CLOSING the switch to introduce step changes into the voltage regulator / excitation system with the PSS in service. Review the chart recordings which should indicate improved dynamic performance of the system.

NOTE

THE CHART RECORDINGS SHOULD SHOW THAT WITH THE PSS IN SERVICE, THE LOCAL MODE OSCILLATIONS ARE DAMPED WHEN COMPARED TO THE OSCILLATIONS WITHOUT THE PSS IN SERVICE.

- 6.7.9 If the stabilizer has performed as anticipated, remove the PSS from service, otherwise repeat those sections as appropriate.
- 6.7.10 Remove ALL instrumentation. Have operations personnel SELECT the excitation system to TEST before removing the 50 kohm potentiometer.
- 6.8 Per-Unit Gain Test of the LP Excitation / Generator System:
 - 6.8.1 RECORD all As Found potentiometer settings in the PSS Data sheets.
 - 6.8.2 ADJUST Unit for approximately 100% load, normal VArs, PSS OFF
 - 6.8.3 SELECT LP Excitation System in AUTO control mode.
 - 6.8.4 LIFT the Frequency Transducer input at L-1 and L-2.
 - 6.8.5 RESET the mechanical limits on L1M to maximum.
 - 6.8.6 RESET the positive and negative Electrical Limits P7 and P8 to 10.
 - 6.8.7 LIFT the output amplifier LA4 input at D' and CONNECT the Signal Output Transducer to the Analyzer Channel 1 input and to the input of LA4 terminal D' and signal ground to L-8.
 - 6.8.8 CONNECT the Generator Terminal Voltage PT secondary to the 3¢ Voltage Transducer. Connect the output of the transducer through the isolation amplifier to the Analyzer Channel 2 Input and the recorder.

- 6.8.9 CONNECT the PSS Output L-6 to L-8 to the Recorder.
- 6.8.10 SET the gain pot P6 to 000 for unity gain.
- 6.8.11 With the Voltage Regulator in Auto, and a ZERO voltage on the output of the PSS, place the PSS in the ON mode.

NOTE

THE VALUES OBTAINED IN THIS TEST WILL BE USED TO CALCULATE THE GAINS AND THE LIMIT SET POINTS FOR THE SYSTEM AT THE END OF THE TEST.

6.8.12 Slowly apply a DC voltage signal via the BIAS control to the output amplifier. Apply a (+)1.00 Vdc signal from the PSS and check that an approximate 1% change in Generator voltage is recorded. If the terminal voltage change is not correct, adjust the output calibration potentiometer P14 to obtain the desired change.

6.8.13 CHECK that a (-)1.00 Vdc output from the PSS will change the generator terminal voltage by 1%.

- 6.8.14 RECORD the change in terminal voltage, VArs, field voltage and current for the PSS output change.
- 6.8.15 REDUCE the BIAS voltage to zero, and turn the PSS OFF.
- Gain and Frequency Response Test of the Excitation / Generator System in an "Open Loop Test". (GENERATOR LOOP TEST)
 - 6.9.1 Create Data Files and set controller options.
 - 6.9.2 Set the controller to cause the generator terminal voltage to swing at between 0.25 and 0.5% of its rated or set voltage, and at a rate between 0.05 and 3.0 Hertz.
 - 6.9.3 Using the previous test connections, with output set on oscillator, place the PSS ON.
 - 6.9.4 Initiate the measurement cycle, and repeat as required to obtain the required Unit Frequency Response.

NOTE: THE AMPLITUDE INFORMATION IS PLOTTED IN DECIBELS:

d8 = 20
$$\log_{10}$$
 Change in $V_{Theorem}$ Change in V_{per} V_{per} been

Change in V_{st} = the amount of voltage change due to the voltage variation for the PSS.

Change in V_{pss} = The amount of test signal voltage change

$$V_{per base} = (V_{gr} @ V_{per} = 0.0 \text{ Vdc})$$

 $V_{per base} = (V_{gr} @ V_{per} = 1.0 \text{ Vdc}) - (V_{gr} @ V_{per} = 0.0 \text{ Vdc})$

- 6.9.5 Reduce the Test signal to zero, and place the PSS in OFF.
- 6.10 Power System Stabilizer Time Constant and Gain Adjustment. (STABILIZER LOOP TEST)
 - 6.10.1 DISCONNECT the Analyzer Output from LA4 terminal D' and RECONNECT the lead lifted at LA4 D'.
 - 6.10.2 CONNECT the Signal Output transducer to the PSS input at L-1 and Common L-8 and to the Analyzer input Channel 1.
 - 6.10.3 DISCONNECT the output of the 3φ voltage transducer from the Analyzer Channel 2 input.
 - 6.10.4 CONNECT the output of the PSS, L-6 and L-8, to the Channel 2 input of the Analyzer.
 - 6.10.5 ADJUST the time constants of the PSS according to the results of the "Open Loop Test". The fundamental function of the phase shifting network in the PSS is to compensate for the phase lag in the response of the excitation / generator system. Adjustment should thus be made to offset the phase lag exhibited by the machine.

NOTE

THE TIME CONSTANTS CAN BE APPROXIMATED MOST READILY BY SELECTING THE PHASE LEAD TIME CONSTANTS AT THE FREQUENCY OF WHICH THEY WOULD PROVIDE 45 DEGREES OF PHASE ADVANCE. THE FREQUENCY TO DETERMINE THE SELECTION OF THIS PHASE ADVANCE TIME CONSTANTS IS THAT POINT WHERE THE GENERATOR / EXCITATION SYSTEM OVERALL RESPONSE LAGS THE INPUT BY 90 DEGREES. THE WASHOUT TIME CONSTANT SHOULD BE SET BETWEEN 1 AND 30 SECONDS.

- 6.10.6 APPLY a sine wave signal from the Analyzer causing the PSS output voltage to swing at least 0.5 V_{pp} , but not more then 2.0 V_{pp} , starting at 0.05 Hz. and ending at 100 Hz.
- 6.11 Gain and Frequency response Test of the Generator / Excitation System and PSS in an "Open Loop Test". (OVERALL LOOP TEST)
 - 6.11.1 DISCONNECT the Analyzer Channel 2 Input from the PSS Output L-6 and L-8. Connect the Output of the 3¢ Voltage Transducer to the Analyzer Channel 2 Input.
 - 6.11.2 CREATE Data Files and set controller options.
 - 6.11.3 Set the controller to cause the generator terminal voltage to swing at between 0.25 and 0.5% of its rated or set voltage, and at a rate between 0.05 and 3.0 Hertz.
 - 6.11.4 With the Voltage Regulator in AUTO mode, and zero voltage on the output of the PSS, place the PSS in the ON mode.
 - 6.11.5 Initiate the measurement cycle, and repeat as required to obtain the required System Frequency Response.
 - . 6.11.6 Reduce the Analyzer Input signal to zero, and place the PSS in OFF mode.
- 6.12 Final Gain Setting For Stable Operation
 - 6.12.1 REMOVE the Signal Output transducer from L-1 and L-8. (Leave PSS output to recorder connected.
 - 6.12.2 RECONNECT the wires lifted to L-1 and L-2 to connect the IPAC frequency transducer.
 - 6.12.3 CHECK that the output of the PSS is at or operating around zero. Check that the gain adjustment control P6 is at "000".
 - 6.12.4 Place the PSS in the ON mode.
 - 6.12.5 SLOWLY increase the gain of the output amplifier, by adjusting P6, until sustained oscillations are detected. These oscillations may occur in the range of 1 to 3 Hz. Oscillations will be seen in the MWatts, MVArs, terminal voltage, filed voltage and PSS output. As soon as these oscillations are detected the PSS should be placed in the OFF mode. Note P6 dial position.
 - 6.12.6 LIFT the input to the LA4 board at D'.

6	PROCEDURE	(Continued)
•	LITOCLUCIAL	1 COHUHUEU

6.12.7 Check the gain level of the output amplifier at the point where the system reached instability. This can be done by applying a DC voltage to the input of the LA4 Board, D' to Common, and measuring the output voltage at L-6 to L-8. The Gain of the amplifier is then the output voltage divided by the input voltage. Reduce the gain of the amplifier using P6 to one-third the level where oscillations occurred. This is the highest gain setting to be used for the PSS. Record this gain and P6 value. Gain ________P6

6.13 Final Electrical and Tripping Settings

6.13.1 CALCULATE the PSS output required to produce a 5% change in generator terminal voltage and record.

Example: If 1.0 Vdc from the PSS output changed the terminal voltage by 0.8% on the $V_{\rm at\ bear}$, then a \pm 5% terminal voltage change per volt from the PSS output would be

$$1V \times \pm 5\% = \pm 6.25 \text{ V}.$$
0.8%

Calculated 5% Limit Output Vdc

- 6.13.2 RESET the electrical output limits by applying a DC voltage to D' on the LA4 Board it Board so that the output voltage at L-6 to L-8 measures 10 Vdc. Adjust P7 to obtain the calculated output voltage above. Repeat with a -10 Vdc input and adjust P8 for the negative calculated output voltage above.
- 6.13.3 RESET the Red and Blue pointers on L1M to one-half the value of the Calculated 5% Limit output above. This sets the mechanical trip points. Record the limit points. Red _______ Blue _____
- 6.13.4 ADJUST the tripping time delay relay T1R so that when the output of the PSS reaches the tripping limits, positive or negative, a period of two (2) seconds will elapse before the PSS will trip. This is done by applying a voltage to the LA4 Circuit Board D' that is greater than the tripping voltage and adjusting the T1R dial. Record the Final Setting. -
- 6.13.5 REMOVE the Signal Output transducer from LA4 terminal D' and RECONECT the lifted leads.
- 6.14 Overall System Stability Test
 - 6.14.1 Have operations personnel place the LP excitation in TEST.

- 6.14.2 At the excitation housing, CONNECT a 50 kohm switchable potentiometer across Voltage Adjust Potentiometer A201P with the resistance set for 50 kohms and the switch closed.
- 6.14.3 Check that the 3φ Voltage transducer and PSS outputs are connected to the recorder.
- 6.14.4 Have operations personnel place the LP excitation in AUTO control.
- 6.14.5 With the recorder operating, the excitation in AUTO, and the PSS in the OFF mode, adjust the 50 kohm potentiometer to obtain a 1% change in generator terminal voltage.
- 6.14.6 Alternately, OPEN and CLOSE the switch to introduce step changes into the voltage regulator / excitation system with the PSS out of service. Review the chart recordings which should indicate the dynamic performance of the system.
- 6.14.7 After the system has stabilized, have operations personnel place the PSS ON.
- 6.14.8 Repeat the above step change tests by alternately OPENING and CLOSING the switch to introduce step changes into the voltage regulator / excitation system with the PSS in service. Review the chart recordings which should indicate improved dynamic performance of the system.

NOTE

THE CHART RECORDINGS SHOULD SHOW THAT WITH THE PSS IN SERVICE, THE LOCAL MODE OSCILLATIONS ARE DAMPED WHEN COMPARED TO THE OSCILLATIONS WITHOUT THE PSS IN SERVICE.

- 6.14.9 If the stabilizer has performed as anticipated, remove the PSS from service, otherwise repeat those sections as appropriate.
- 6.14.10Remove ALL instrumentation. Have operations personnel SELECT the excitation system to TEST before removing the 50 kohm potentiometer.
- 6.15 Underexcited Reactive Ampere Limit (URAL) In Service Testing HP
 - 6.15.1 This test will be made with both the HP and LP generators in AUTO regulate mode, and the LP generator should absorb most of the MVAr load from the HP generator. This will minimize the decrease in generator terminal voltage.

6	PROCEDURE	(Continued)

6.15.2 To stay within the rated capability of the generator (armature core end heating), hydrogen pressure must be greater than:

Total	Expecte	ed Limit	PSIG Hydrogen		
Net MW	HP MVAr	LP MVAr	HP	LP	
700	160	150	38	30	

- 6.15.3 The settings of the loss-of-field CEH relays are such that the calculated MVArs at which the relays would operate are greater than 425 MVAr for the HP and greater than 370 MVAr for the LP generators.
- 6.15.4 ADJUST load for approximately 700 MW.
- 6.15.5 SELECT both the HP and LP excitation to TEST mode.
- 6.15.6 ADJUST both HP and LP excitation to obtain approximately -20 MVArs on each generator.
- 6.15.7 RECORD the Limit Start setting.
- 6.15.8 While monitoring the URAL output, ADJUST the HP and LP URAL Limit Detector Start points to activate the URALs at approximately 20 MVArs. Note the position of each. HP LP
- 6.15.9 READJUST the HP and LP MVAr loading for zero MVArs on each generator.
- 6.15.10Reset the HP and LP Limit Start dials to their AS FOUND values.

NOTE

If the URAL circuits are not functioning properly, stop and correct the problem before continuing.

- 6.15.11PLACE the HP and LP regulators in AUTO.
- 6.15.12ADJUST the HP and LP regulator voltmeters for zero.
- 6.15.13Decrease the excitation on the HP generator in 20 MVAr steps. At each step, record the following meters:
 - .1 Generator kV
 - .2 HP and LP Mwatts
 - .3 HP and LP MVArs
 - .4 HP and LP Generator Field Amps
 - .5 HP and LP Generator Field Volts
 - .6 HP and LP Phase 1 Amps
 - .7 HP and LP Regulator Voltmeters
 - .8 HP URAL Limit Output
 - .9 HP URAL Limit Detector

- 6.15.14When the limit detector reaches zero, further attempts to reduce excitation should have little or no effect. This point should be close to the curve value of MVAr limit:
 - .1 If the limit does not occur at the expected value, continue to decrease excitation two additional steps only, then return to normal excitation slowly and evaluate test data.
 - .2 If oscillation occurs on field voltmeters, reduce gain B1P as first step.
 - .3 If evaluation warrants, make adjustments to URAL settings and repeat step 6.15.13.
- 6.15.15READJUST HP excitation for zero MVArs.
- 6.16 Underexcited Reactive Ampere Limit (URAL) In Service Testing LP
 - 6.16.1 ADJUST the HP and LP regulator voltmeters for zero preparatory to perform LP URAL test.
 - 6.16.2 Decrease the excitation on the LP generator in 20 MVAr steps. At each step, record the following meters:
 - .1 Generator kV
 - .2 HP and LP Mwatts
 - .3 HP and LP MVArs
 - .4 HP and LP Generator Field Amps
 - .5 HP and LP Generator Field Volts
 - .6 HP and LP Phase 1 Amps
 - .7 HP and LP Regulator Voltmeters
 - .8 LP URAL Limit Output
 - .9 LP URAL Limit Detector
 - 6.16.3 When the limit detector reaches zero, further attempts to reduce excitation should have little or no effect. This point should be close to the curve value of MVAr limit:
 - .1 If the limit does not occur at the expected value, continue to decrease excitation two additional steps only, then return to normal excitation slowly and evaluate test data.
 - .2 If oscillation occurs on field voltmeters, reduce gain B1P as first step.
 - .3 If evaluation warrants, make adjustments to URAL settings and repeat step 6.15.13.
 - 6.16.4 READJUST both HP and LP excitation for NORMAL reactive load at this power level.

- 6.17 Maximum Excitation Capability of the HP Generator
 - 6.17.1 The excitation on the HP will be increased to obtain maximum MVAr output capability without increasing generator terminal voltage more than 5% above the operating point. The LP generator will be placed in TEST position to prevent the LP generator from absorbing the reactive load from the HP generator.
 - 6.17.2 PLACE the LP regulator in TEST position.
 - 6.17.3 While monitoring the following parameters, SLOWLY increase excitation on the HP generator until generator terminal voltage has increased by 5%, or the maximum rating of any component of the unit has been attained.
 - .1 Generator kV
 - .2 HP and LP Mwatts
 - .3 HP and LP MVArs
 - .4 HP and LP Generator Field Amps
 - .5 HP and LP Generator Field Volts
 - .6 HP and LP Phase 1 Amps
 - .7 HP and LP Regulator Voltmeters
 - 6.17.4 RECORD the above data in the attached data sheets.
 - 6.17.5 SLOWLY return the HP excitation to NORMAL.
 - 6.17.6 PLACE the LP regulator in AUTO control mode.
- 6.18 Maximum Excitation Capability of the LP Generator
 - 6.18.1 The excitation on the LP will be increased to obtain maximum MVAr output capability without increasing generator terminal voltage more than 5% above the operating point. The HP generator will be placed in TEST position to prevent the HP generator from absorbing the reactive load from the LP generator.
 - 6.18.2 PLACE the HP regulator in TEST position.
 - 6.18.3 While monitoring the following parameters, SLOWLY increase excitation on the LP generator until generator terminal voltage has increased by 5%, or the maximum rating of any component of the unit has been attained.
 - .1 Generator kV
 - .2 HP and LP Mwatts
 - .3 HP and LP MVArs
 - .4 HP and LP Generator Field Amps
 - .5 HP and LP Generator Field Volts

6 PROCEDURE (Continued)

- .6 HP and LP Phase 1 Amps
- .7 HP and LP Regulator Voltmeters
- 6.18.4 RECORD the above data in the attached data sheets.
- 6.18.5 SLOWLY return the LP excitation to NORMAL.
- 6.18.6 PLACE the HP regulator in AUTO control mode.

7 ENCLOSURES

- 7.1 WSCC Test Procedure
- 7.2 Generator Data Sheets
 - 7.2.1 Power System Stabilizer Data Sheet
 - 7.2.2 Underexcited Reactive Ampere Limit Data Sheet
 - 7.2.3 Maximum Excitation Data Sheet

Station / Unit	
Date:	PSS Type:
	Reg. Type:

Power System Stabilizer Settings:

Device	Function	Previous	As Found	Calibration Check	As Left
P1	Reset Time Constant T1			Gildek	
P2	#1 Lead T.C.				
P3	#1 Lag T.C.				
P4	#2 Lead T.C.				,
P5	#2 Lag T.C.				
P6	Gain				
P7	(+) Electrical. Limit Adjust				
P8	(-) Electrical Limit Adjust				
P14	DC Gain Adjustment				
Red Pointer on L1M	(+) Mechanical Limit Adjust				
Blue Pointer on L1M	(-) Mechanical Limit Adjust				
T1R	Time Delay Relay for Trip				

Reg. Type: __ PSS Type: Station / Unit_ Date: Time:

Underexcited Reactive Ampere Limit Test

		 	 		_	
URAL Linds Output	op/					
URAL Llm. Det.	mAde					
LP Volt Regulator	ρρ					
HP Volt Regulator	700					
LP AØ Current	V					
HP AØ Current	050					
LP Fld Voltage						
HP Fld Voltage						
LP Fid Current						
HP Fld Current Ado						
LP MVAr						
HP MVAr						
LP						
HP						
Gen ×						

	PSS Type:	Reg. Type:	n Canability Test
Station / Unit	Date:	lime:	Maximum Excitation Canability Test

		 	 		,	_	
LP Volt Regulator	Vdo						
HP Volt Regulator	00A						
LP AØ Current	280						
HP AØ Currant							
LP Fld Voltage							
HP Fld Voltage							
LP Fld Current Ade							
HP FId Current Ado							
LP							
HP							
LP							
HP							
Gen kV							

APPENDIX F

EXAMPLE OF HYDRO TURBINE GOVERNOR MODELING

THIS DOCUMENT WAS PREPARED FOR A PREVIOUS PROJECT. ITS CONTENT, STYLE AND FORMAT WERE APPROPRIATE FOR THE CIRCUMSTANCES OF THAT PROJECT AND MAY NOT BE SO FOR NEW PROJECTS. IT IS PROVIDED HERE AS AN ILLUSTRATION AND FOR GENERAL INFORMATION ONLY

EXAMPLE OF HYDRO TURBINE GOVERNOR MODELING

Introduction

Governor gains and time constants can be measured with the unit de-watered or with the unit running using either frequency response or time-domain techniques. The tests require placing a displacement transducer on a servomotor to measure gate position. Transducers can also be mounted on distributing and pilot valves for measurement of intermediate variables. With a unit de-watered, governor operation is simulated by applying appropriate speed and/or power signals to the governor. On-line testing is accomplished by quickly raising the speed adjustment by hand (to simulate a step input), or by introducing step or sine-wave signals into electronic governors. Validation is performed by introducing the same inputs (at the same operating point) into a model of the governor using either a stability program or a general purpose control system simulation tool such as Matlab.

A. Hydroelectric Dashpot Type Governor

The parameters typically required for modeling of a hydro turbine governor are Permanent Droop, Servo Time Constants, Temporary Droop, Dashpot Time Constant, Limiting rates of change of gate position, Gate Position Limits, Water Inertia Time Constant, and Turbine Gains. The following are typical procedures for estimating values of these parameters:

1. Identifying Servo Time Constants and Permanent Droop

With the generator operating at moderate load:

- Disable the dashpot by opening the dashpot needle valve to give the shortest possible dashpot time constant. (In electronic dashpot-analogy governor, set the relaxation time to its minimum value). Note the initial setting carefully before making the adjustment so that the original setting can be restored after the test.
- Increase the speed reference (speed adjustment) by a small amount to insert a step into the system
 - Record the gate position signal versus time
 - Permanent droop is determined by the change in speed reference divided by the steady-state change in gate position (Both of these values must be in per unit)
 - Servo time constants are determined by trial and error trying to match simulations to the gate position response (recorded). This matching process can be done with a power system stability program, or a general purpose tool such as Matlab.

2. Identifying Temporary Droop and Dashpot (Relaxation) Time Constant

With the generator operating at moderate load

- Return the dashpot to the initial position
- Increase the speed reference by a small amount quickly by hand to insert a step into the system
- Record the gate position signal versus time
- Temporary Droop and dashpot time constant are determined by trial and error trying to match simulations to the gate position response (recorded). This matching process can be done with a power system stability program or a general purpose tool such as Matlab.
- 3. Identifying maximum gate opening and closing rates With the generator operating at moderate load:
- Lower the gate limit (at the governor cabinet) quickly to about 10-20 percent lower than the initial gate position

Record the gate position signal versus time

.Maximum closing rate is can be measured directly from the test record

- Raise the gate limit quickly above the initial gate position

.Record the gate position signal versus time

.Maximum opening rate can be measured directly from the test record

- 4. Maximum and Minimum Gate Positions
- These values should indicate the normal operating range of the unit. Their values may be the physical limits of gate motion, or may be operational limits that reflect reservoir conditions, rough running bands, and other factors.
- 5. Turbine Parameters

Tw - Water Starting Time

This is the classical water starting time defined as the summation of penstock length times velocity terms for each section of the penstock divided by the acceleration of gravity and the head.

This is usually available as design data for the plant. Verification of this parameter is possible, but beyond the scope of this document.

Turbine Gain Factors

Turbine Gain factors should be derived from steady state observations of gate position and power output. The required turbine gain factor is typically the ratio of per unit power output to per unit change in gate position.

B. Hydroelectric PID Electro-hydraulic Governor

Parameters to identify include Proportional Gain, Reset Gain, Derivative Gain, gate servo gain and time constant, permanent droop, and position/velocity limits on the gate position. These parameters can be identified by frequency responses on portions of the circuits with the machine shut-down or running. Alternately, the parameters can be identified by the techniques listed below. In either case, model validation should be performed using the following time-domain techniques:

1. Identifying the gate servo response characteristics:

With the generator operating at a moderate load:

- Insert a small step signal in addition to the Gate Command signal
- Record the gate position signal versus time
- The gain and time constant are determined by trial and error trying to match the gate position response (recorded). This matching process can be done with a power system stability program or a general purpose program such as Matlab.
- 2. Identifying the proportional, reset, and derivative gains and the permanent droop:

With the generator operating at moderate load:

- Insert a small step signal (0.005 pu) in addition to the speed reference or speed signal
- Record the Gate Command signal versus time (or gate versus time)
- The change in speed reference (step signal of 0.005 pu) divided by the steady state change in the Gate Command (or gate) signal is the speed droop. If the input to the droop block is the electric power signal, then the speed regulation is: The change in speed reference (step signal of 0.005 pu) divided by the steady state change in the electric power signal.
- The controller gains are determined by trial and error trying to match the Gate Command (or gate) signal step response (recorded). This matching process can be done with a power system stability program or a general purpose tool such as Matlab.
- 3. To identify gate limit and the turbine parameters refer to the mechanical governor section.

C. Hydroelectric Double-Derivative Electro-hydraulic Governor

The parameters to identify in the double derivative governor and the same gate servo and turbine parameters as for other governors, the derivative gain and the double derivative gain. The methods described above can be used for gate servo and turbine parameters.

To identify the derivative gains have the generator operating at a moderate load, then:

- -Wire the speed or frequency signal (input of the derivative and double derivative blocks) through a switch for disconnection and reconnection of the signal (in case of load rejection)
- With the speed or frequency signal disconnected, insert a small step signal in place of the speed or frequency signal (into the derivative and double derivative blocks)
- Record the step response of these blocks
- The derivative gain and the double derivative gain are determined by trial and error trying to match the output signal step response (recorded). This matching process can be done with a power system stability program or a general purpose tool such as Matlab.

APPENDIX G

BIBLIOGRAPHY

BIBLIOGRAPHY

- 1. Adkins, B "General Theory of Electrical Machines", Book, Chapman & Hall, 1957.
- 2. Agee, J. C., and Girgis, G. K., "Validation of Mechanical Governor Performance and Models Using an Improved System for Driving Ballhead Motors," IEEE Transactions on Energy Conversion, Vol. 10, No. 1, March 1995, pp. 156-161.
- 3. Anderson & Fouad, Book, "Power System Control and Stability," Iowa State University Press, Ames, Iowa, USA.
- 4. ASME Performance Code Committee No. 20.1, "Speed and Load Governing Systems for Steam Turbine-Generator Units," ANSI/ASME-PTC20.1-1977.
- 5. De Mello, F.P. and Concordia, C., "Concepts of Synchronous Machine Stability as Affected by Excitation Control," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-88, Apr. 1969, pp. 316-329.
- 6. De Mello, F. P., et al, "Dynamic Models for Fossil Fueled Steam Units in Power System Studies," IEEE Transactions on Power Systems, Vol. 6, No. 2, May 1991, pp. 753-761.
- 7. De Mello, F. P, .Ribeiro, J. R, "Derivation of Synchronous Machine Parameters from Tests," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-96, No. 4, July/August 1977.
- 8. EPRI EL-5736, Project 2328-1, Aug 1988, "Confirmation of Test Methods for Synchronous Machines Dynamic Performance Models."
- 9. Farmer, R.G. and Agrawal, B.L., "State-of-the-Art Technique for Power System Stabilizer Tuning, IEEE Transactions on Power Apparatus and Systems", Vol. PAS-102, Mar. 1983, pp. 699-709.
- 10. Girgis, G. K., and Vu, H. D., "Verification of Limiter Performance in Modern Excitation Control Systems," IEEE Transactions on Energy Conversion, Vol. 10, No. 3, Sept. 1995, pp. 538-542.
- Hannett, L.N., Feltes, J. W., Fardanesh, B., "Field Tests to Validate Hydro Turbine-Governor Model Structure and Parameters," IEEE Transactions on Power Systems, Vol. 9, No. 4, November 1994, pp. 1744-1751.
- 12. Hovey, M., "Adjustment of Hydro Governor Characteristics Using Separate Drive for the Speed Sensing Element," Trans. ASME, Series A, p 13, 1965.
- Hurley, J.D. and Baldwin, M.S. "High-Response Excitation Systems on Turbine-Generators: A Stability Assessment," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 6, Nov. 1983, pp. 4211-4221.
- 14. IEEE PES Committee Report P.L. Dandeno, Chairman, "Supplementary Definitions and Associated Test Methods for Obtaining Parameters for Synchronous Machine Stability Study Simulations," IEEE Transactions on PAS, Vol. PAS-99, No. 4, pp. 1625-1633, 1980.
- 15. IEEE 115A-1987 IEEE "Standard Procedures for Obtaining Synchronous Machine Parameters by Standstill Frequency Response Testing."

- 16. IEEE Committee Report, "Supplementary Definitions and Associated Test Methods for Obtaining Parameters for Synchronous Machine Stability Study Simulations," IEEE Transactions, PAS Paper F 79 647-0, 1979.
- 17. IEEE Committee Report, "Excitation System Dynamic Characteristics," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-92, No. 1, Jan./Feb. 1973, pp. 64-75.
- 18. IEEE Committee Report, "Excitation System Models for Power System Stability Studies," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, No. 2, Feb. 1981, pp. 494-509.
- 19. IEEE Std 421.1-1986, "IEEE Standard Definitions for Excitation Systems for Synchronous Machines (ANSI)".
- 20. IEEE Std 421.2 1990, "IEEE Guide For Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems."
- 21. IEEE Std. 421.5-1992, "IEEE Recommended Practice for Excitation Systems for Power Stability Studies."
- 22. IEEE Task Force on Overall Plant Response, "Dynamic Models for Steam and Hydro Turbines in Power System Studies," IEEE Transactions on Power Apparatus and Systems, Nov/Dec 1973.
- 23. IEEE Working Group for Prime Mover and Energy Supply Models for System Dynamic Performance Studies, "Hydraulic Turbine and Turbine Control Models for System Dynamic Studies," IEEE Transactions on Power Systems, Vol. 7, No. 1, February 1992, pp. 167-179.
- 24. Koessler, R. J., "Techniques for Tuning Excitation System Parameters," IEEE Transactions on Energy Conversion, Vol. EC-3, No. 4, December 1988.
- 25. Kundur, P., Book, McGraw Hill, Inc., 1994. "Power Systems Stability and Control,"
- Ramey, D. G., J.W. Skooglund, J. W., "Detailed Hydrogovernor Representation for System Stability Studies," IEEE Transactions on Power Apparatus and Systems, Vol. 89, No. 1, January 1970, pp. 106-112.
- 27. Rowen, W. I., "Simplified Mathematical Representations of Heavy Duty Gas Turbines," Transactions of ASME, Vol. 105(1), 1983, pp. 865-869.
- 28. Shackshaft, G., P.B. Henser, "Model of Generator Saturation for Use in Power System Studies," Proc IEEE, Vol. 125, No. 8, 1979.
- 29. Sugiyama, Nishiwaki, Takeda and Abe, "Measurements of Synchronous Machine Parameters Under Operating Condition", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 4, April 1982,
- 30. Undrill, J. M., Woodward, J. L., "Nonlinear Hydro Governing Model and Improved Calculation for Determining Temporary Droop" IEEE Trans, Vol PAS-86, pp 443-453, 1967.
- 31. Undrill, John and Laskowski, T. F., Model Selection and Data Assembly for Power System Simulations, IEEE Trans. PAS, Vol. PAS-101, No.9, Sep. 1982.
- 32. WSCC Test Procedure for Power System Stabilizers.

Western Systems Coordinating Council

REPLY TO:

WSCC TECHNICAL STAFF

UNIVERSITY OF UTAH RESEARCH PARK 540 ARAPEEN DRIVE, SUITE 203 SALT LAKE CITY, UTAH 84108-1288 TEL.: (801) 582-0353

FAX: (801) 582-3918

November 25, 1996

OPERATIONS COMMITTEE POWER PLANT CONTACTS

The August 10, 1996 System Disturbance Report contained recommendations calling for all generation owning and operating entities in the WSCC region to test their generating units with a rating of 10 MVA or greater. These tests are intended to ensure proper operation of exciter controls and protection and to determine steady state and dynamic reactive capabilities. The Control Work Group has developed the attached guidelines for testing exciter controls, protection and steady state reactive capabilities. Appendix A to the guidelines lists the pertinent conclusions and recommendations stemming from the August 10 report. Guidelines for determining dynamic reactive capabilities are under development.

In the meantime, you should begin scheduling and conducting tests on your generating units in accordance with the attached guidelines. Please use the form provided (last page of the attached) to provide the data to WSCC by June 1997. Make as many copies of the form as you will need to report all your units of the appropriate size. Return the completed form(s) to WSCC, either by mail or by fax. Operations Committee representatives should coordinate with their Power Plant Contact Persons to determine who will submit their reports to WSCC.

I encourage you not to delay conducting these tests. If everyone waits until near the June deadline, we'll be faced with an excessive number of units being tested simultaneously and the resulting risk to system reliability.

Sincerely.

∕Joseph W. Comish

attachments

cc: Control Work Group Members Technical Studies Subcommittee w/attachment

SYNCHRONOUS MACHINE REACTIVE LIMITS VERIFICATION

BACKGROUND:

The WSCC Control Work Group has been tasked with developing procedures for testing synchronous machines (generators and condensers) and exciters due to problems noted during the Aug. 10, 1996, disturbance. The procedures outlined in this document should determine the true MVAR capability of the tested machines and reveal problems in exciter control and protection schemes (see Conclusion 4 and Recommendation 4.c. in Appendix A). Appendix A contains the text of the August 10 disturbance report pertinent to this assignment.

The procedures outlined are for steady state conditions. More comprehensive procedures for testing units outside normal operating range will be developed and distributed by the WSCC Control Work Group at a later date.

REQUIREMENTS:

All synchronous machines (Generators and synchronous condensers must be tested and the same results reported) rated at 10 MVA or greater should be tested. Machines that tripped during system disturbances (July 2 and/or August 10) due to relaying or excitation control problems should be tested first; the remainder should be tested starting with the largest machines. If machines have been tested within the last two years and the requested data are available, no additional testing is required, just data transmittal.

NOTE: To minimize the risk of tripping several large units nearly simultaneously during testing, the tests should be scheduled with your control area's dispatcher/system operator. The dispatcher/system operator should, in turn, provide the scheduled test notification for units larger than 100 MW to all systems, using the WSCC Communication System.

PROCEDURES:

In order to obtain the steady state MVAR capability of a generating unit or synchronous condenser, perform the following tests. Operating conditions should be as close to normal as practicable, including loading, unit temperatures (field, etc.) and pressures (hydrogen, boiler, etc.). Tests should be performed during periods of operation which maximize the MVAR in/output of the machine. Therefore, testing should be performed during a period when system voltage is most advantageous to yield these results. When possible other synchronous machines or power system components should be used, to obtain the most advantageous terminal voltage during these tests. Ensure that controls such as volts/hertz limiters and UELs (see ¶ B) are coordinated and at proper settings prior to testing to prevent unnecessary relaying by volts/hertz relays or loss of excitation relays..

- A. While operating in a steady state mode at net dependable MW capability (near rated output), raise excitation in automatic voltage control until one of the following conditions occurs:
 - 1) The 100% MVA rating of the machine is reached (reach capability curve);
 - Rated field current or field voltage is reached;
 - Terminal voltage limit is reached (105-110%, depending on unit);
 - 4) Generator temperature limits are reached;

- The maximum/over excitation limiter is reached/alarms; 5)
- Maximum reference adjuster travel or limit is reached; Maximum auxiliary bus voltage is reached. 7)

Hold unit at this level for a minimum of 15 minutes (30 minutes is a preferable duration) then take the measurements outlined in C.

- While operating in a steady state mode at net dependable MW capability, В. lower excitation in automatic voltage control until one of the following conditions occurs: Note: The acronym UELs (underexcitation limiters) used in this paragraph is synonymous with MEL's (minimum excitation limiters) and URALs (underexcited reactive ampere limiters). CAUTION determine first the expected MVAR limiting point, and do not proceed past that point. If this point is reached without activating the underexcitation limiters/minimum excitation limiters return to normal excitation and determine why the limiter is not functioning. Also, ensure that all transformer taps throughout the power plant are coordinated so the terminal voltage can reach the minimum (90-95%, depending on unit) without causing problems to the auxiliary power further in the plant.
 - UELs are activated; 1)

2) 100% MVA rating is reached;

3) Generator temperature limits are reached;

4) Minimum reference adjuster travel or limit is reached:

5) Minimum auxiliary bus voltage is reached;

6) Minimum terminal voltage is reached.

Take measurements outlined in C (no need to hold as in A).

Measurements: The following values should be reported to the WSCC Staff С. at 540 Arapeen Drive, Suite 203, Salt Lake City, UT 84108:

Gross MW output at both test points;

Gross MVAR output of generator reached in tests A and B; 2)

3) Generator terminal voltage at maximum positive and negative MVARs;

4) Actual field current at both test points;

Machine MVA rating, both original nameplate rating and tested 5) rating, if different;

6) Generator rated terminal voltage and rated field current; 7)

Auxiliary bus voltage at minimum and maximum points; 8)

Rated power factor.

D. The following machine parameters may be recorded for use during future testing (in addition to values being reported):

1) Generator field voltage;

2) Rotating exciter field current and voltage (if appropriate);

3) Generator stator currents:

4) Field temperature.

Ε. PRECAUTIONS: If the generator does not normally operate in these regions, strip chart recording of exciter quantities may be helpful for problem resolution. All relay targets on the generator protection and excitation system should be reset before testing. Some excitation systems transfer to manual or backup controllers if overexcitation is detected. If this happens, record the level at which it occurs and

reset the control to automatic before placing the unit back in normal service. If the machine trips for any reason during these tests, specify what tripped and why it tripped. Correct the problem and retest the unit.

- F. These tests should be repeated every five years or anytime there is a major change in an excitation system including, but not limited to, stator or rotor rewinds.
- G. Subject to operating economics, etc., testing the units at reduced MW loading is encouraged (do not include these values in the test results). This is especially important for units that are not usually base loaded at dependable MW capability.

Appendix A - Excerpts from August 10, 1996 Disturbance Report

4. Conclusion: Immediately following the loss of the Ross-Lexington 230-kV line and the Merwin-St. Johns 115-kV line, the McNary units began tripping due to excitation system protection problems, withdrawing substantial real, reactive, and inertial support from the system. Three McNary units also tripped prior to COI separation during the July 2 disturbance and were identified in the disturbance review.

Recommendation

- c. The WSCC Control Work Group (CWG) shall determine what tests need to be applied to generating unit exciters to ensure proper operation of exciter controls and protection. They shall also determine what unit MVA level must be tested and develop a procedure to ensure uniform testing, including the frequency of testing and a recommended priority list of units to be tested first. (The CWG work must be completed by November 1, 1996.) All generation owning and operating entities in the WSCC region shall perform the prescribed testing and report to CMOPS. (June 1997) The results should be used to properly model generating units in system studies, and actions taken reported to CMOPS. (June 1997)
- 10. Conclusion: The system oscillations increased until voltage finally collapsed on the COI, leading to the COI opening and the subsequent formation of four islands in the WSCC. Generating units in the Northwest (such as Hermiston, and Coyote Springs) did not respond dynamically or in the steady state with reactive support as predicted in studies. The level of dynamic reactive support from generation at the northern terminus of the COI and PDCI has been greatly reduced by fish operation constraints, particularly at The Dalles.

Recommendation:

a. By November 1997, the WSCC CWG shall determine what tests should be applied to generating units to determine their steady state and dynamic reactive capabilities and provide appropriate guidelines. They shall also determine what unit MVA level must be tested and develop a procedure to ensure uniform testing, including the frequency of testing, and a recommended priority list of units to be tested first. (The CWG work must be completed by November 1, 1996.) Generation-owning and operating entities in WSCC shall test, or provide proof of tests on, their generating units with capacity of ten MW or greater to determine their steady state and dynamic reactive capabilities, adjust study assumptions to match the test results, and report to CMOPS. (June 1997)

DATA REPORTING FORM FOR REACTIVE LIMITS TESTS

Reporting	Entity :_	(Organization Name)		Pa	ge of Pa	ages				
Plant Name:Person Reporting (Name):										
Phone/Fa	x No.:		/							
Unit Nam	Unit Name (Number)									
			Machine 1	Ratings						
Terminal	Voltage: _	, Stator	Current:	, Power Fact	or:, MV	A:,				
Field Cur	rent:	_, Field Voltage:								
		Test Resu	lts at Maximum	Output (Procedi	ıre A)					
Gross	Gross	Terminal	Field	Auxiliary Bus	Rated Power	Tested MVA				
	Test Results at Minimum Output (Procedure B)									
Gross MW	Gross MVAR		Field Current	Auxiliary Bus	1	7				
AVZ VV	MVAK	Voltage		Voltage	Factor	-				
Unit Name	(Number)		<u> </u>	1					
			Machine R	atings						
Terminal Voltage:, Stator Current:, Power Factor:,										
Field Current:, Field Voltage:, Exciter Field Voltage:, Exciter Field Current:										
Test Results at Maximum Output (Procedure A)										
Gross	Gross	Terminal	Field	Auxiliary Bus	Rated Power	Tested MVA				
Test Results at Minimum Output (Procedure B)										
Gross	Gross	Terminal	Field Current	Auxiliary Bus	Rated Power					
		1								