
The Model Conversion Definition File
John Undrill

12 September 2011

1. ! General

The 3ic and 4ia data conversion programs get the definitions of the conversions to be made from Model
Conversion Definition files (MCDF). 3ic and 4ia search for these files in the directory lib. Each MCDF defines a
single conversion from one PSLF dynamic model to another. Only the MCDFs that are specified in the rule.txt
file in the working directory are used in an execution of 3ic or 4ia.

A sample MCDF is shown in figure 1.

2.! The rule.txt file and lib Directory

The MCDF files must reside in the directory lib. This directory must be a sub-directory of of the working
directory in which 3ic and 4ia are executed.

The model conversions (and corresponding MCDFs that are to be used) are specified by entries in the file rule.txt.
This file must be in the working directory. Each line of rule.txt activates one conversion.
A # character in the first character of a line in rule.txt makes the line a comment; comment lines are ignored by
3ic and 4ia. A representative file rule.txt is shown in figure 2.

Each line (other than comments) of rule.txt must have the form

imod omod

where imod is the name of a PSLF dynamic model that is to be replaced and omod is the name of the model that is
to replace it.

An MCDF must exist for each active entry in rule-text and must have the name

imod-omod

3. ! Model Parameter Names

The parameter names used by the PSLF dynamic models are used in the MCDF. The parameter names used in
the MCDF must be identical to the names used in the PSLF documentation pages of the input and output
models, with the addition of a leading @ or $ character is follows:

Parameters in the input model data record must be specified in the MCDF in the form
@name-in
where name-in is the name assigned to the parameter in its PSLF model documentation page.

Parameters in the output model data record must be specified in the MCDF in the form
@name-out
where name-out is the name assigned to the parameter in its PSLF model documentation page.

4. ! File Structure

4.1 ! Formal Structure

The structure of the Model Conversion Definition File is as follows; it consists of two stanzas:

An 'input' stanza describing the parameter sequence of the input model and assigning names to the parameters.
The entires in this stanza MUST be in the order in which the parameters appear in the data record of the input
model.

An 'output' stanza that specifies multiple functions:
! description of the parameter sequence of the output model
! assignment of values to the output parameters in terms of the values of the input parameters
! checking of the values assigned to the output parameters
! replacement of invalid output parameter values with 'safe' values

The entries in the output stanza MUST be in the order in which the parameters appear in the data record of the
output model.

The formal arrangement of the file is as follows:

comment any line beginning with # is a comment and is skipped
first stanza describes the parameter sequence of the input model
namea; defaulta
nameb; defaultb
.
namen; defaultn
@end
second stanza describes the parameter sequence of the output model, assigns, and checks values
pexpa; mina maxa cexpa; rexpa;
pexpb; minb maxb cexpa; rexpa;
.
pexpm; minm maxm cexpm; rexpm;
$end

In this file :

namea,...,namen! ! are the names of the n parameters of the input model, with @ as the first
! ! ! character of each

defaulta,...,default! are default values assigned to the n parameters of the input model

mina,...,minm! ! are min values assigned to the m parameters of the output model

maxa,...,maxm! ! are max values assigned to the m parameters of the output model

pexpa,...,pexpm ! ! are parameter assignment statements of the form name-out = f(name-in)
! ! ! stating the values of the output parameters in terms of the input parameters

cexpa,...,cexpm ! ! are logical expressions of the form f(name-in, name-out) defining checks of the
! ! ! output ! parameter values resulting from the corresponding pexpa,...,pexpm
! ! ! expressions

rexpa,...,rexpm ! ! are replacement assignment statements of the form
! ! ! name-out = f(name-in,name-out) stating the value of the output parameters in
! ! ! terms of the input parameters

All elements of the file must be present except for the replacement assignment statement, rexpa,...,rexpm. Any or
all of rexpa,...,rexpm may be omitted.

Note that the default, min, and max entires in the file are for information only and are not used by 3ic.

4.2 ! Example File and Example Expressions

Figure 1 shows a sample MCDF specifying a conversion of the exdc1 model into the corresponding esdc1 model.

The simplest parameter assignment expression used in figure 1 is

$tr = @tr

The simple assignment expression states that the first parameter of the input exdc1 model is to be copied directly
to the first parameter of the output esdc1a model.

The checking statement associated with this assignment statement is

$tr>=0

It states that the value of $tr must be zero or positive to be correct.

There is no replacement statement following the above checking statement. In the absence of the replacement 3ic
flags the output value of $tr if the checking statement is not TRUE, but takes no corrective action.

The line

$tf=@tf1 0.1 5.0 $tf>=0.0

in the MCDF illustrates the assignment of the value to an output parameters whose name is different from that of
the corresponding input parameter. Note that the checking statement, $tf>=0, examines the output parameter.

The line

$tc=@tc; 0.0 5.0 ($tc>=0)&&($tc<=$tb); $tc=1;

specifies that the parameter tc of the exst1 model is to be copied without change to the parameter tc of the esst1a
model. The output value of tc is checked against zero and against the output value of the parameter tb. The
replacement statement $tc=1; specifies that tc must be set to zero if the check statement does not evaluate to
TRUE.

5.! Sequence of Operation of 3ic

3ic operates in the following sequence:

the data record of the input model is parsed and the parameter values are stored as the name-in variables
assigned in the first stanza of the MCDF

values are assigned to the name-out variables in accordance with the parameter assignments in the second
stanza of the MCDF

the checking logical expressions are evaluated and, if a logical expression evaluates to FALSE the
corresponding replacement statement (if present) is executed immediately

the data record for the output model is written to the output dyd file

6.! Variables

The statements and logical expressions specified in the MCDF are parsed, interpreted, and executed with the
same logical and arithmetic operators and with the same precedence rules as used in the C language. The
names, name-in and name-out, are the names of the variables that are available to these 'programs'. Each
'program' specified in the second stanza has access to all variables specified in the first. It is important to note,
however, that the parameter assignment statements in the second stanza can use ONLY name-out variables that
have been assigned by a preceding statement.

Because all assignments specified in the second stanza are made before the checking statements are executed, the
checking and replacement statements can refer to all named parameters, both name-in and name-out.

7.! Expressions and Operators

 Statements and logical expressions can use the following operators:

+! plus
-! minus
*! multiply
/! divide
>! great than! ! (logical)
<! less than
>=! greater than or equal! (logical)
<=! less than or equal!(logical)
&&! and! ! ! (logical)
||! ! ! ! (logical)
(! open parenthesis
)! close parenthesis

Statements and expressions must contain NO spaces. They may be terminated by a semicolon, ;, as an aid to
clarity.

Figure 1!Sample Model Conversion Definition File

#exdc1 esdc1a
@tr 0.0
@ka 400.0
@ta 0.02
@tb 0.0
@tc 0.0
@vrmax 20.0
@vrmin -20.0
@ke 1.0
@te 1.0
@kf 0.02
@tf1 0.0
@tf2 0.0
@e1 3.0
@se1 0.01
@e2 4.0
@se2 0.1
@end
#
#
#Assignment Min Max Check Replacement
#statement val val statement statement
#
$tr=@tr; 0.0 0.5 $tr>=0
$ka=@ka 5.0 1000 $ka>=1
$ta=@ta 0.0 0.5 $ta>=0.0
$tb=@tb; 0.0 20.0 (($tb==0)&&($tc==0))||(($tb>=@tc)&&($tb>0)); $tb=1;
$tc=@tc; 0.0 5.0 ($tc>=0)&&($tc<=$tb); $tc=1;
$vrmax=@vrmax 1.0 40.0 $vrmax>=1
$vrmin=@vrmin -40.0 0.0 $vrmin<=0
$ke=@ke 0.0 2.0 $ke>=-0.2
$te=@te 0.05 2.5 $te>=0.05
$kf=@kf 0.0 0.5 $kf>=0
$tf=@tf1 0.1 5.0 $tf>=0.0
$spdmlt=0 0.0 1.0 $spdmlt==0
$e1=@e1 1.0 5.0 $e1>=1
$se1=@se1 0.0 0.2 $se1>=0
$e2=@e2 1.2 6.0 $e2>=0
$se2=@se2 0.0 1.0 $se2>=0;
$uelin=0 0.0 2.0 $uelin==0;
$exclim=0 0.0 0.0 $exclim==0;

Figure 2!Sample file rule.txt

#Input Output
#Model Model
exdc4 esdc3a
exst3 esst3a
exst3a esst3a
exst2 esst2a
exst2a esst2a
exac4 esac4a
exac6a esac6a
scrx esst1a
#sexs esst1a
exst1 esst1a
exst4b esst4b
ieeet1 esdc1a
exdc1 esdc1a
exdc2 rexs
exdc2a esdc2a
exac1 esac1a
exac1a rexs
exac2 esac2a
exac3a esac3a
exac8b esac8b
#pidgov hypid
#ieeeg3 hypid
#gpwscc hypid
#hygov hypid
#lcfb1 lcfb1
hygovr hygovr

