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Introduced to Quincy during BC Hydro, WAC Bennett

excitation system commissioning, June 2025

~ Basler DECS2100 retrofit of Cutler Hammer ECS2100

a5

| Data presented is from a hydroelectric generator tested in
. 2015, with GENTPJ modeled published, The generator was
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* ARMATURE REACTION SATURATES FLUX WITHIN
STATOR CORE FINGERS.

Q — Axis similar except:

se-1.+ L9, feat(ong. Kiss) « USES A CURRENT SATURATION MULTIPLIER KIS TO
Ld REPRESENT THIS PHENOMENA

* A DEPARTURE FROM POTIER REACTANCE
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GENTPJ RESULTS

PURPOSE -ARMATURE REACTION AFFECTS FLUX
WITHIN STATOR CORE FINGERS

USES A CURRENT SATURATION MULTIPLIER KIS TO
REPRESENT THIS PHENOMENA

A DEPARTURE FROM POTIER REACTANCE, OPEN
CIRCUIT AND SHORT CIRCUIT TESTING PERFORMED
DURING GENERATOR COMMISSIONING. WHAT'S
THE ALTERNATIVE MANUFACTURER TEST?

INACCURATE AT THE PERIPHERY OF VEE-CURVE
ESTIMATES. MAKE UP THE DIFFERENCE BY
MANIPULATING SATURATION VALUES, “ADJUSTING
THE SIMULATION KNOBS”

TYPICALLY SEE THE SATURATION MULTIPLIER
INTENTIONALLY SET TO ZERO IN STUDIES
PUBLISHED BY OTHER GROUPS. KIS SKEWS THE
SIMULATED VEE-CURVE TO THE LEFT, INCREASING
MEASURED VS. SIMULATED ERROR

VEE-CURVE SHOWN USING GENTPJ.
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VEE-CURVE 2015 DATA GENTPJ
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2015 GENTPJ, 3% AVR STEP

Mod 26 Validation- Online 3% AVR Voltage Step with PSS Off
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2015 GENTPJ, 1%

TUOUC

GOV STEP

Mod 27 Validation- Online 1% Speed Reference Step

40,0
0800 -
35.0
30.00 =
250 4
&0 0.400 +
1500 - !
—— Wterm MW, Test 0.300 +
10.0 - | e W N, Shrranilation —_— ——Wicket Gate pu, Test
| - | e g Gan b [PUI], Simuwslation
2 T T 0.100
0.0:% ; : ! ! : 0.000 + - s !
] & 10 15 Fin] 25 30 a5 a0 a 5 10 15 0 25 In 35 A0
Time (s) Tirne: (3]
1.000 1]
et *—uzs‘—':::i;:::—“'— NNEREN —— O T T T T EEEEE=
0,580 { ; _\-__.'—_;,-' 40 4 | : :> o ' -
0570 - .—C
20 t
0960
0.0 4
0,950 - e
20
ezl ===Viorm Voltage [PL], Test
0.930 4 0.7
0.920 + 60 1 ——-\iterm Mvar, Test
0,910 - el S0 1 0t P AN S - ED e it g Mvar, Simulation |||
0.900 + - e qog L1yt 0 iRl SAEEEN o
o 5 10 15 20 5 30 35 a0 0 5 10 15 20 25 n £ 40
Time (s) Time (s}




o, U-Kidia  Ryfs M

“ lpfg — Aty s <«
o , VW

Lig T . T+5y)
1d Pq
Va Laa Wig LTS <l> Kvtalya Sl /s
1+5y)
R /s

. l -

Time Constants (sec)

<Public>

GENQEC

Reactances (per unit) Saturated Unsaturated ) _— :
‘Synchronous direct axis Xs 1655 1833  Transient, open circuit direct axis Te 5208
Transient direct axis x's 0310 0.352 Sub-transient, open circuit direct axis T'% 0.047
Sub-transient direct axis x"s  0.230 0.267 Transient, L-N short-circuit direct axis T 1553
Synchronous quadrature axis xg  1.629 1.804 Sub-transient, L-N s.c. direct axis Tar  0.041
Transient quadrature axis x'q 0.488 0.555 Transient, L-L short-circuit direct axis Taz 1.362
Sub-transient quadrature axis x'; 0.228 0.265 Sub transient, L-L s.c. direct axis_. T'ez 0.040
Armature leakage, steady-state  xi  0.207 0.218 Transient, 3-phase s.c. direct axis . Taz 0.881
Zero sequence xo 0.108 0.113 Sub transient, 3-phase s.c. direct axis T3 0.035
Negative sequence xz 0229 0.266 Transient, open-circuit quadrature axis  Tqo 0.579
Potier Reactance Xp ---  0.351 Sub-transient, open-circuit quad. axis T'e 0.075
Transient, L-N, s.c. quadrature axis Ty 0223
Resistance and Capacitance. Sub-transient, L-N, s.c. quadrature axis T"qs 0.051
Armature: Transient, L-L, s.c. quadrature axis Tqz 0.204
Zero Sequence Resistance (p.u.) ro 0.00241 Sub-transient, L-L s.c. quadrature axis 7752 0.048
Positive Sequence Res. (p.u.) ri 0.00322 Transient, 3-phase s.c. quadrature axis Tgs 0.157
Negative Sequence Res. (p.u.) rz  0.03187 Sub-transient, 3 ph. s.c. quadrature axis 7"z 0.035
DC Resistance @ 75°C (QV/phase) ra 0.00242 DC component of short-circuit current  Taz  0.381
Capacitance to ground (uF/phase) 0.1810 DC component of L-N fault Tar  0.314
Field: DC component of L-L fault Taz  0.381
DC Resistance @ 75°C (Q) rr 0.10170
Short-circuit Torque Data.
Excitation/Field Data Line-to-Line s.c. at 105% rated voltage
Minimum Exciter Rating voltage (V) 350 Ty =5.445(p.u.) o =4.243 (1/sec)
Minimum Exciter Rating power (kW) 1130 T2=2722 (p.u.) B =3.235 (1/sec)
Generator field voltage at rated output (V) 317 73=0.653 (p.u.) y = 3.838 (1/sec)
Generator field current at rated output (A) 3018 Smva — generator rated apparent output (MVA)
Field current required to put magnetic flux 1109 Ts: — electromagnetic torque applied to shaft
across air gap (A) during Line-to-Line s.c. transient (Mega-N+m)
Field current at no load & rated voltage (A) 1228 Llsier ~ shaft speed (Rad./sec.)
Saturation factor at rated voltage (p.u.) 0.107 t - time (sec.)
Saturation factor at 1.2 times rated voltage 0.421 To — constant magnetic torque component (Per
(p.u.) unit torque). This coefficient is numerically
equal to the generator rated Power Factor
® - voltage angular frequency ® =2n-f, where f
is rated voltage frequency in Hz.
Inertia Constants
Generator and Exciter: rotor kinetic energy ~ 0.821 MV A
at rated speed per kVA of rated output, Tsc = C[-To+ Ty - e - sin(wt) —
shaft

H Constant (kWssec/kVA)

WANG, QUINCY PARTICIPATED IN ITS
DEVELOPMENT

RE-INTRODUCES POTIER REACTANCE PRINCIPLE.

POTIER REACTANCE CAN BE TYPICALLY
MEMORIALIZED WITHIN COMMISSION REPORTS OR

GENERATOR SPECIFICATIONS

COMPATIBLE WITH OLDER GENERATION MODELS.

GENQEC IS NOT A MODEL BASED UPON A
POSTULATE REGARDING FLUX VARIANCE AT THE
GENERATOR IRON CORE FINGERS. GENQEC IS AN
IMPROVEMENT OF OLDER MODELS.

APPRECIATIVE OF THE WECC 2021, WHITE PAPER
ON GENQEC
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2024 GENQEC TEST

38 MVA
11 KV
1994.482748 Amps

Steady State Parameters Saturation Eq
Xq ) B 4.589502
Xd 1.25 Sel 0.0869 A 0.000883
Xl 0.15 Sel2 0.2176
Ra 0.003
Measured IFD base 280.6 amps Kw
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VEE-CURVE 2015 DATA GENQEC MODEL

(IDENTICAL DATA, DIFFERENT MODEL) USING KW = 0.2 FOUND DURING 2024 TEST

armature current PU
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2024 GENQEC 2% AVR STEP

£

0.998

PSS Online - Terminal Voltage

Sec

Figure 5-5. Test 3 - Voltage

PSS Online - Active Power

Seconds

Figure 5-6. Test 3 — Real Power (MW)
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2024 GENQEC, 0.5% GOV STEP

Active Power

Serlesl

Serles2

10 20 30 40

Time (s)

Figure 6-1. Speed Reference Step Response — Real Power
Output (MW)

Speed

Speed (p.u.)

Time (s)

Figure 6-2. Speed Reference Step Response — Real Power
Output (MW)
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INSPECTING THE KIS, FLUX PINCHING IDEA

The winding arrangement of salient pole

generators —double layer Diamond coils typical
design for hydro machines

18 poles (7200/18) = 400 RPM

162 slots/(3ph*18) = 3 slots/Zone

Figure 2.5 Division of the periphery of a three-phase, four-pole machine into phase
zones of positive and negative values. The pole pitch is T, and phase zone distribution
T,. When the windings are located in the zones, the instantaneous currents in the posi-
tive and negative zones are flowing in opposite directions.

120°
TECH DATA

1 NUMBER OF STATOR SLOTS 7=162
2 NUMBER OF SLOTS PER POLE PER PHASE Q=3
3 POLES NUMBER 2P=18
4 NUMBER OF PARALLEL CIRCUITS q=2 The phase zone distribution is written as
5 WINDING PITCH Y=1--9 7, =L,

(2.4) m

The number of zones will thus be 2pm. The number of slots for each such zone is ex-

T T e e R

14
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INFORMATION FROM THE STATOR WINDING DIAGRAM

* A single Zone appears to be about 4
slots, 2 Slots contain an exclusive
phase. The rotor pole span should be
relatively similar 4 poles

* Stator coil span is 9 Slots

* Red, Green, Blue in CCW rotation.

Generator is ACB wound

s

b;\_ ) Opaque Line - Leading Coil End

1“_1 CCW Rotation Transparent Line = Trailing Coil End
A phase = RED

[ C phase = Green

A

O B phase = Blue

Slot10

Slot1

15
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INFORMATION FROM THE STATOR WINDING DIAGRAM

* 3 slot winding group with top and bottom coil group offset. Each A-phase zone appears to reside in 4 slots
rather than 3.
* Rotor shoe appears to be about 4 Slots in Span. Be mindful of the physical width due to the rotor copper coil.

Slot10

Slotl
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CHART REPRESENTATION SLOTS 1 TO 10

Looking at the Spreadsheet representation of the coils in each slot
shows the rotor center axis aligned with the A-phase MMF center
axis. Coils in Slot 2 and 3 Have a Leading and trailing coil side.

This generator has only 2 parallel strings of coils. The leading and
trailing edge coil sides are part of a series of A phase coils.
Currents flow in slots 2 and 3 in the same direction.

Phase A (Red) shares a coil slot with another phase.

Slot10

Slot1

For a phase the flux direction of phase coil ends in slots 1 through
4 have the same polarity

Slot# 1 2 3 4 5 6 7 8 910
Top Coil End
Bottom Coil End

17
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CHART REPRESENTATION SLOTS 1 TO 10
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ROTATION DIRECTION
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Short pitching and special

distribution leakage flux a better explanation for
Saturation dependency to generator loading?

* Rotor is egregiously offset to show power angle.
The idea of flux gradient across stator tooth at the periphery
may be an explanation to variance of saturation due to
loading. My experience with generators of different vintages,
older generators seem to work better than newer generators.
Xq is generally smaller on older generators. Small Xg means
small power angle changes induce larger armature reaction
current.
Something else to consider, older generators have thicker
insulation, new insulating materials are thinner allowing for
uprates.
* Per “Design of Rotating Electrical Machines” Textbook,
discuss the types of leakage flux listed

Leakage flux not crossing the airgap

Slot leakage flux — shown in the image

Tooth tip leakage flux

End winding leakage flux

Pole leakage flux
Leakage flux crossing the airgap

Short pitching

spacial distribution 18
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SHORT PITCH AND SPACIAL DISTRIBUTION

= vasaey

MMF and flux density

Salient-pole rotor

Round-rotor

Frm = Wlp Airgap flux
density
i )
Field
By ..j winding
sFm !
mmi/pole
T
T
(a)
Bepu

Sl

(b)
Field-winding mmf and airgap flux density: (a) salient pole rotor and (b) nonsalient pole

(lon Baldea,, Synchronous Generators. Figure 4.12)

Quincy Wang’s MVS presentation represents the
effects of short pitch tp/t.

BC Hydro

Power smart

Figure 4.9 Occurrence of an air-gap flux leakage as a result of the spatial distribution of

stator and rotor windings in different positions (a) and (b). When the current-carrying

parts of the windings are in an aligned position, the resulting sum current linkage is
stator stator

zero, otherwise it deviates from zero.

rotor rotor
. A
Oy 8 ;
' stator : stator
s - ES
e, o,
......... % AR
i H P—— e s ————
i H ' H i i
! ' TR STESTERTEDN FREED
et j
rotor
Ol o A
~'sum Oqm
v B
" H HEH -
e i >
' i
(a) (b)

In Figure 4.9a, the current linkage of the stator winding happens to be fully com-
pensated, because a corresponding current flows at an aligned position in the rotor

Design of Rotating Electrical Machines
(Pyrhonen et al., 2013)

19
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SUMMARY

* The GENTPJ Model has been applied to hydroelectric generators for over a decade, this model produces
challenges for those producing the generator models (GOP). GENTPJ incorporates a saturation multiplier. It
provides an offset to the Vee-Curve. This means similar effects can be made by adjusting XD, X| or saturation
constants. “More knobs to turn”.

* Validation testing work using the GENQEC has so far shown better results to GENTPJ. The GENQEC white paper

regarding the application of GENQEC is most insightful. Understanding how to get the models out of the
generator is paramount!

20
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