

Modular Composite Load Model Implementation in WECC Base Case Update

Nick Hatton
Senior Engineer

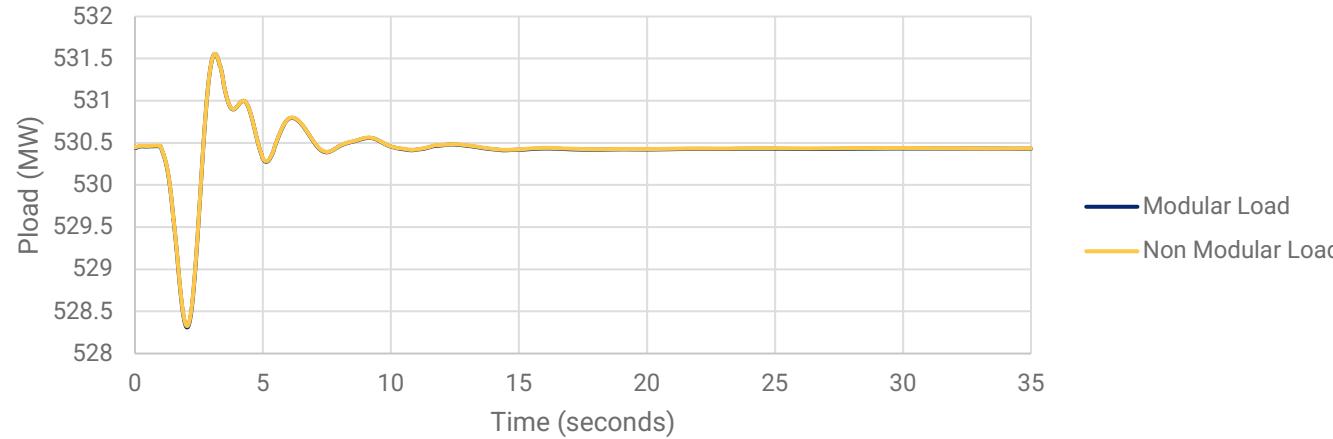
Modular Composite Load Model Creation Tool

- Andreas Schmitt (BPA) built a python script that imports the original spreadsheet (WECC Load Composition Model - ver4c.xlsx) data into the modular format
- Current version creates models that have the same parameters, although the format looks very different
- The goal in this testing is to confirm we are getting the same models from the tools and that PSLF is providing the same responses for modular and non-modular models
- Currently, the modular models are available in the following software versions:
 - Power World Simulator
 - PSLF v23 and v24 support the models, but only v24 new GUI has a high enough model limit to support models for a full WECC base case
 - PSS/e – available in v36, recommended that users move to v36.3.2, as there was a bug in earlier versions. Siemens is building the WECC dynamics cases with the modular composite load model in this version now

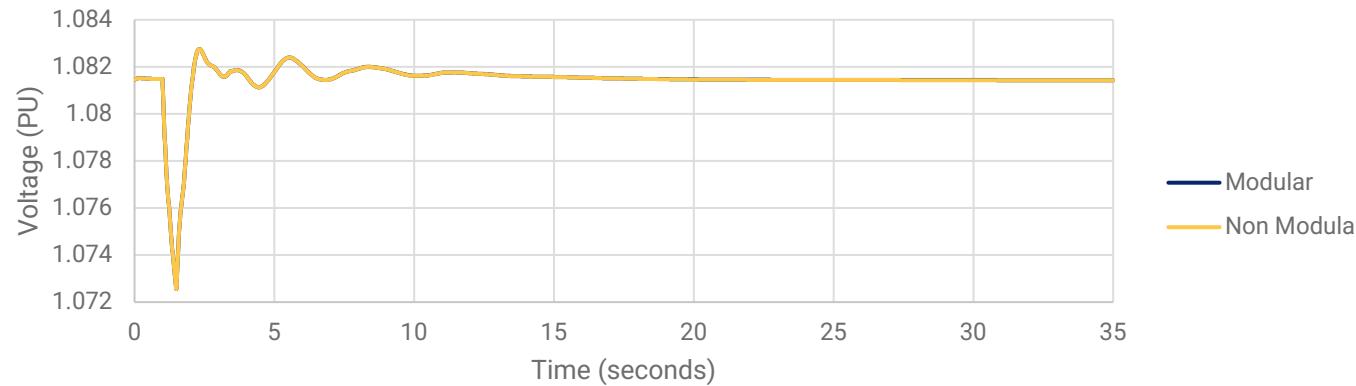
Model Examples

```

jcmpldw -47 "SCI_RES" 0 : #1.0 mva=-1.2 /
  "Pmin" 5.0 "PQmin" 1.4327 "Vmin" 0.93 "KVtresh" 40.0 /
  "Bss" 0.0 "Rfd" 0.04 "Xfd" 0.04 "Fb" 0.75 /
  "Xxf" 0.08 "TfixHS" 1.0 "TfixLS" 1.0 "LTC" 1.0 "Tmin" 0.9 "Tmax" 1.1 "step" 0.00625 /
  "Vmin" 1.0 "Vmax" 1.02 "Tdel" 999.0 "Ttap" 5.0 "Rcomp" 0.0 "Xcomp" 0.0 /
  "Fma" 0.0307574273867 "Fmb" 0.0428215894412 "Fmc" 0.0354693401701 "Fmd" 0.0463745648693 "Fel" 0.207617351522 /
  "PFel" 1.0 "Vd1" 0.7 "Frcel" 1.0 /
  "Pfs" -0.999846544287 "Ple" 2 "Plc" 0.849183444522 "P2e" 1 "P2c" 0.150816555478 "Pfreq" 0.0 /
  "Qle" 2 "Q1c" -0.5 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1.0 /
  "MtpA" 3 "MtpB" 3 "MtpC" 3 "MtpD" 1 /
  "Lfm" 0.75 "Rs" 0.04 "Ls" 1.8 "Lp" 0.12 "LppA" 0.104 /
  "Tpo" 0.095 "Tppo" 0.0021 "H" 0.1 "Etrq" 0.0 /
  "Vtr1" 0.7 "Ttr1" 0.1 "Ftr1" 0.2 "Vrc1" 1.0 "Trc1" 99999.0 /
  "Vtr2" 0.5 "Ttr2" 0.02 "Ftr2" 0.7 "Vrc2" 0.7 "Trc2" 0.1 /
  "Lfm" 0.75 "Rs" 0.03 "Ls" 1.8 "Lp" 0.19 "LppA" 0.14 /
  "Tpo" 0.2 "Tppo" 0.0026 "H" 0.5 "Etrq" 2.0 /
  "Vtr1" 0.6 "Ttr1" 0.2 "Ftr1" 0.2 "Vrc1" 0.75 "Trc1" 0.05 /
  "Vtr2" 0.5 "Ttr2" 0.02 "Ftr2" 0.3 "Vrc2" 0.65 "Trc2" 0.05 /
  "Lfm" 0.75 "Rs" 0.03 "Ls" 1.8 "Lp" 0.19 "LppA" 0.14 /
  "Tpo" 0.2 "Tppo" 0.0026 "H" 0.1 "Etrq" 2.0 /
  "Vtr1" 0.65 "Ttr1" 0.02 "Ftr1" 0.2 "Vrc1" 1.0 "Trc1" 9999.0 /
  "Vtr2" 0.5 "Ttr2" 0.02 "Ftr2" 0.3 "Vrc2" 0.65 "Trc2" 0.1 /
  "Lfdm" 1.0 "CompPF" 0.98 /
  "Vstall" 0.45 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.032 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 /
  "fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 0.0 "ttr2" 9999.0 /
  "Vcloff" 0.5 "Vc2off" 0.4 "Vclon" 0.6 "Vc2on" 0.5 /
  "Tth" 15.0 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025 /
  "DGtvne" 2 "dadtatno" -110.0 "dcmbase" -0.9

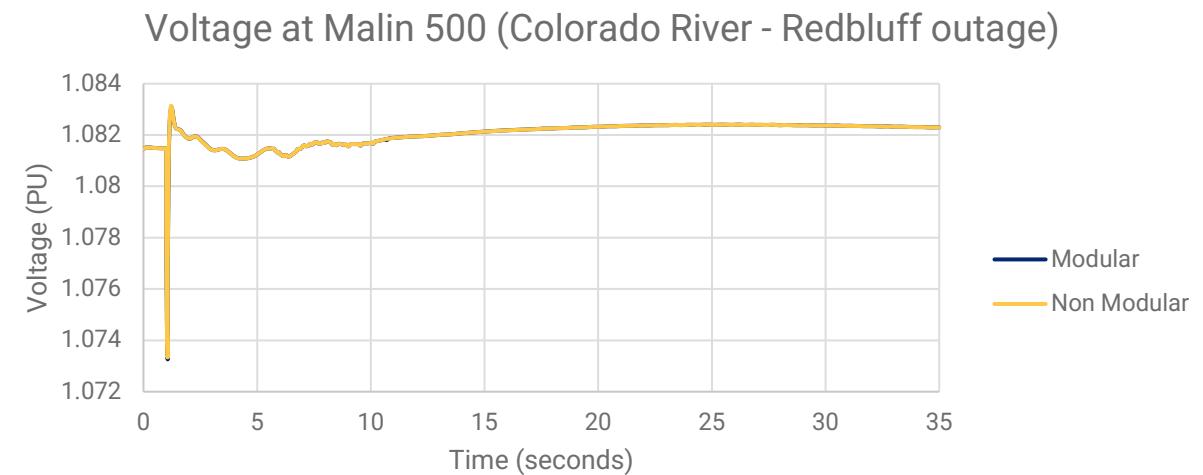
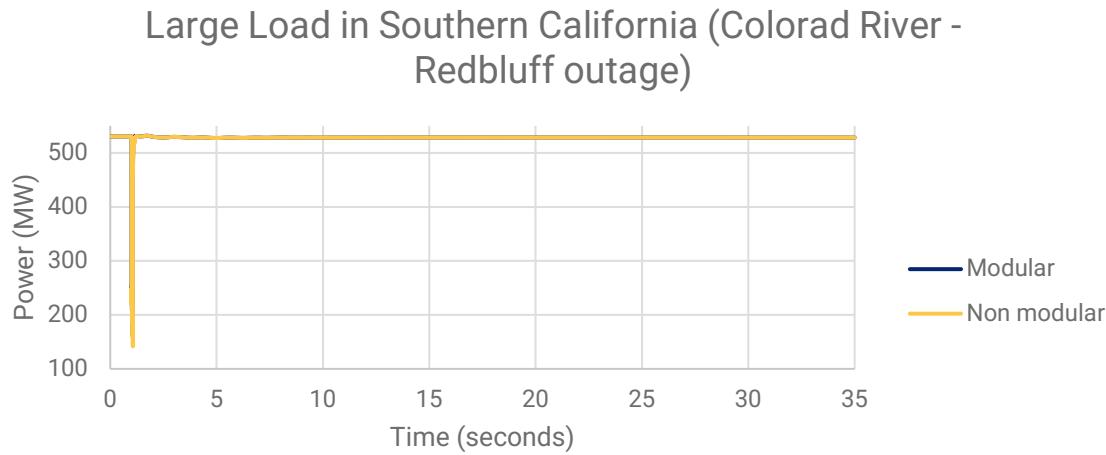

#SCI_RES
_cmp_stat -100136 : "pfs" -0.9998465442871708 "Ple" 2 "Plc" 0.8491834445216279 "P2e" 1 "P2c" 0.15081655547837214 "Pfreq" 0.0 "Qle" 2 "Q1c" -0.49999999999999994 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1.0
_cmp_dist -100095 : "bss" 0.0 "rfdr" 0.040000 "xfdr" 0.040000 "xxf" 0.080000 "tfixhs" 1.000000 "tfixls" 1.000000 "ltc" 1.000000 "tmin" 0.900000 "tmax" 1.1000 "step" 0.006250 /
  "vmin" 1.000 "vmax" 1.0200 "tdel" 999 "ttap" 5.0000 "rcomp" 0.0 "xcomp" 0.0 "s1" 0.0 "s12" 0.0
_cmp_mot3 -100488 : "lfm" 0.750000 "Ra" 0.040000 "Ls" 1.8000 "Lp" 0.120000 "Lpp" 0.104000 "Tpo" 0.095000 "Tppo" 0.002100 "H" 0.100000 "Etrq" 0.0 "Vtr1" 0.700000 /
  "ttr1" 0.100000 "Ftr1" 0.200000 "Vrc1" 1.000000 "Trc1" 99999.0 "Vtr2" 0.500000 "Ftr2" 0.020000 "Ftr2" 0.700000 "Vrc2" 0.100000
_cmp_mot3 -100688 : "lfm" 0.750000 "Ra" 0.030000 "Ls" 1.8000 "Lp" 0.190000 "Lpp" 0.140000 "Tpo" 0.200000 "Tppo" 0.002600 "H" 0.500000 "Etrq" 2.0000 "Vtr1" 0.600000 /
  "Ttr1" 0.020000 "Ftr1" 0.200000 "Vrc1" 0.750000 "Trc1" 0.050000 "Vtr2" 0.500000 "Ftr2" 0.020000 "Ftr2" 0.300000 "Vrc2" 0.650000 "Trc2" 0.050000
_cmp_mot3 -100888 : "lfm" 0.750000 "Ra" 0.030000 "Ls" 1.8000 "Lp" 0.190000 "Lpp" 0.140000 "Tpo" 0.200000 "Tppo" 0.002600 "H" 0.100000 "Etrq" 2.0000 "Vtr1" 0.650000 /
  "Ttr1" 0.020000 "Ftr1" 0.200000 "Vrc1" 1.000000 "Trc1" 9999.0 "Vtr2" 0.500000 "Ftr2" 0.020000 "Ftr2" 0.300000 "Vrc2" 0.650000 "Trc2" 0.100000
_cmp_lpac -100988 : "lfm" 1.000000 "CompPF" 0.980000 "Vstall" 0.450000 "Rstall" 0.100000 "Xstall" 0.100000 "Tstall" 0.032000 "Frst" 0.200000 "Vrst" 0.950000 "Trst" 0.300000 "fuvr" 0.100000 /
  "vtr1" 0.600000 "ttr1" 0.020000 "vtr2" 0.0 "ttr2" 9999.00 "Vcloff" 0.500000 "Vclon" 0.600000 "Vc2on" 0.500000 "Tth" 15.0000 "Th1t" 0.700000 /
  "Th2t" 1.9000 "tv" 0.025000
_cmp_elec -100287 : "pfel" 1.000000 "vdi" 0.700000 "vd2" 0.500000 "frcel" 1.000000
_cmp_der_a -110 : "trv" 0.020000 "dbd1" -99.0000 "dbd2" 99.0000 "kgv" 0.0 "vref0" 0.0 "tp" 0.020000 "pfflag" 1.000000 "tig" 0.020000 "ddn" 20.0000 "dup" 20.0000 /
  "fdbd1" -0.000600 "fdbd2" 0.000600 "femax" 99.0000 "femin" -99.0000 "pmax" 1.000000 "pmin" 0.0 "frqflg" 1.000000 "dpm" 99.0000 "dpm" -99.0000 "tpord" 5.0000 /
  "imax" 1.2000 "pqflag" 0.0 "v10" 0.490000 "v11" 0.540000 "vh0" 1.2000 "vh1" 1.1500 "tv10" 0.160000 "tv11" 1.5000 "tvh0" 0.160000 "tvh1" 1.5000 /
  "vrfrac" 0.500000 "fltrp" 58.5000 "ftrp" 61.2000 "f1" 300.00 "f2" 300.00 "tg" 0.020000 "rrpwr" 2.0000 "tv" 0.020000 "kpg" 0.100000 "kig" 10.0000 /
  "xe" 0.250000 "typeflag" 1.000000 "vftn" 0.300000 "iqh1" 1.000000 "iq11" -1.000000
_cmpldw2 -38 "SCI_RES" 0 : #1 mva=-1.2 /
  "Pmin" 5 "PQmin" 1.4327 "Vmin" 0.93 "KVtresh" 40 /
  cmp_dist -100095 /
  cmp_mot3 -100488 0.030757427386701095 /
  cmp_mot3 -100688 0.0428215894411671 /
  cmp_mot3 -100888 0.035469340170121384 /
  cmp_lpac -100988 0.0483745648693237 /
  cmp_elec -100287 0.20761735152248598 /
  cmp_der_a -110 1 -0.900 /
  cmp_stat -100136 -1

```


Note: the only difference is the removal of the Fb parameter as it is assumed to be 1 in the modular model

Test with Ringdown

Large load in Southern California (Ringdown)

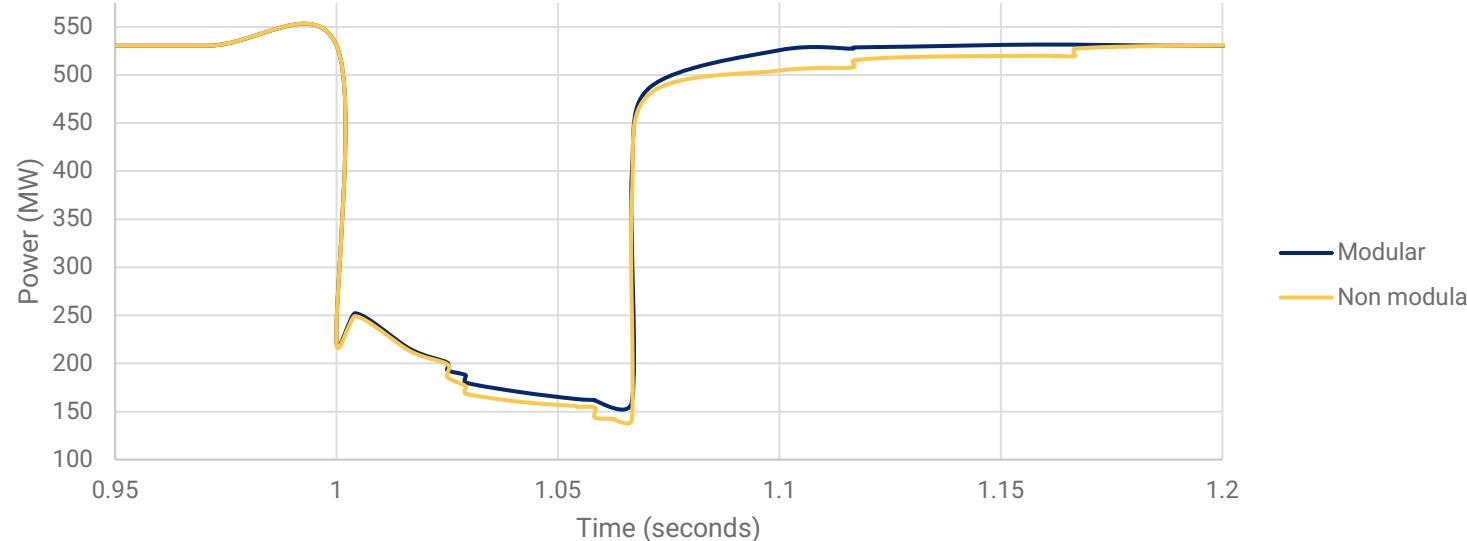
Voltage at bus Malin 500 (Ringdown)

Colorado River – Redbluff Outage

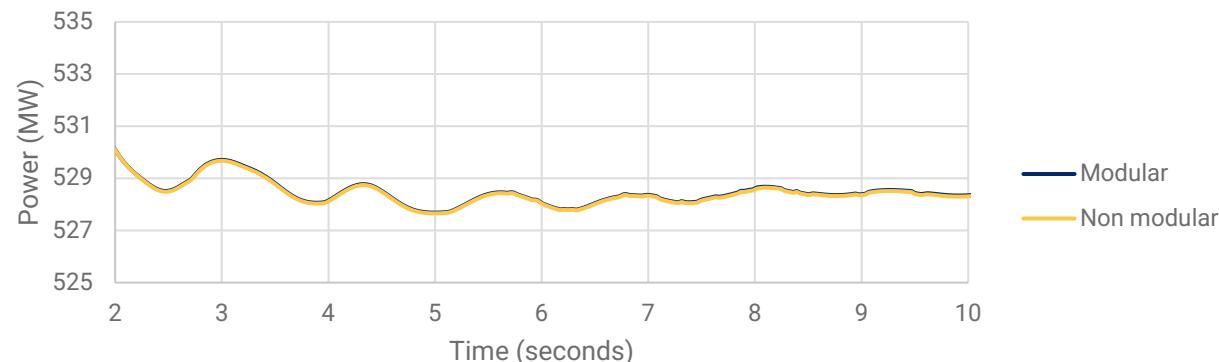
Four-cycle, three-phase fault at the Colorado River 500 kV bus. The fault is cleared, and the two circuits from Colorado River to Redbluff are tripped

Colorado River – Redbluff: Load Tripped by Composite Load Model

Modular

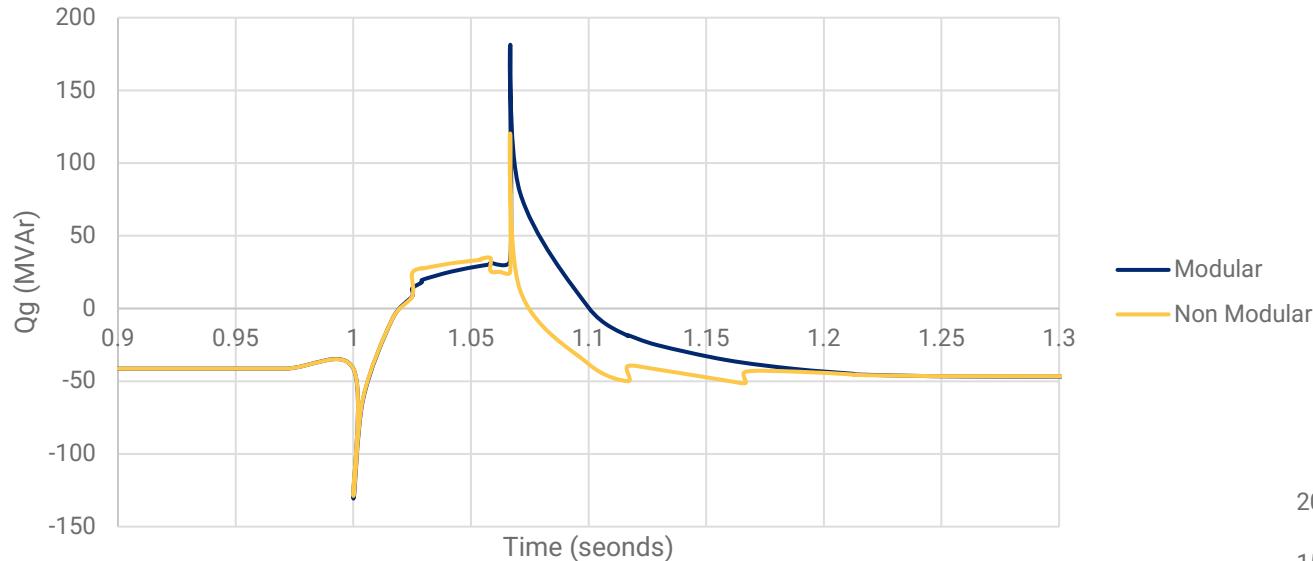

To Bus	To Bus Name	Type	Model Name	Area	Max. Value	Final - Init. Value	Final Value	Min. Time	Max. Time	Spread	Spread %	Up Spread	Down Spread
21	IID	xton	Idtrpmo2	21	4.9351	0	0	0.033	1.067	4.935	0	4.935	0
24	SOCALIF	xton	Idtrpmo2	24	246.9077	16.42287	16.42287	0.033	1.067	246.908	0	246.908	0

Non-Modular

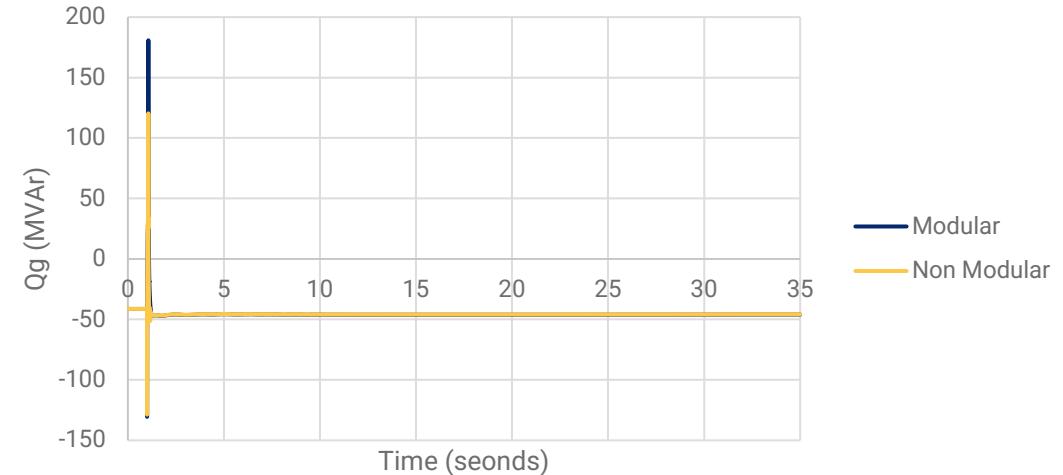

To Bus	To Bus Name	Type	Model Name	Area	Max. Value	Final - Init. Value	Final Value	Min. Time	Max. Time	Spread	Spread %	Up Spread	Down Spread
21	IID	xton	Idtrpmo1	21	6.03231	0	0	0.033	1.067	6.032	0	6.032	0
24	SOCALIF	xton	Idtrpmo1	24	277.3065	16.43945	16.43945	0.033	1.067	277.307	0	277.307	0

Colorado River – Redbluff: Load Details

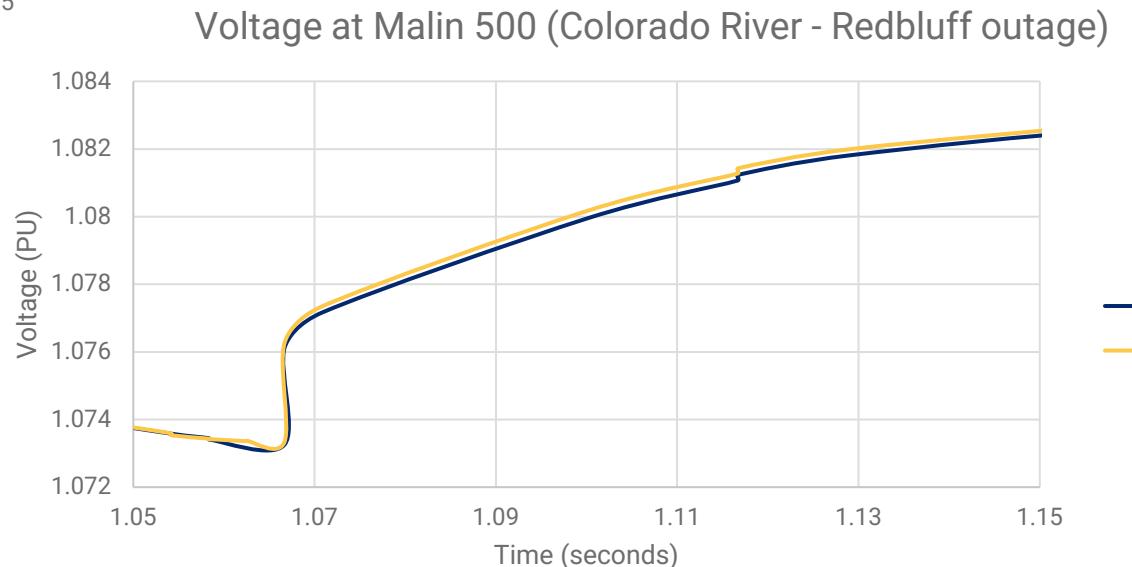
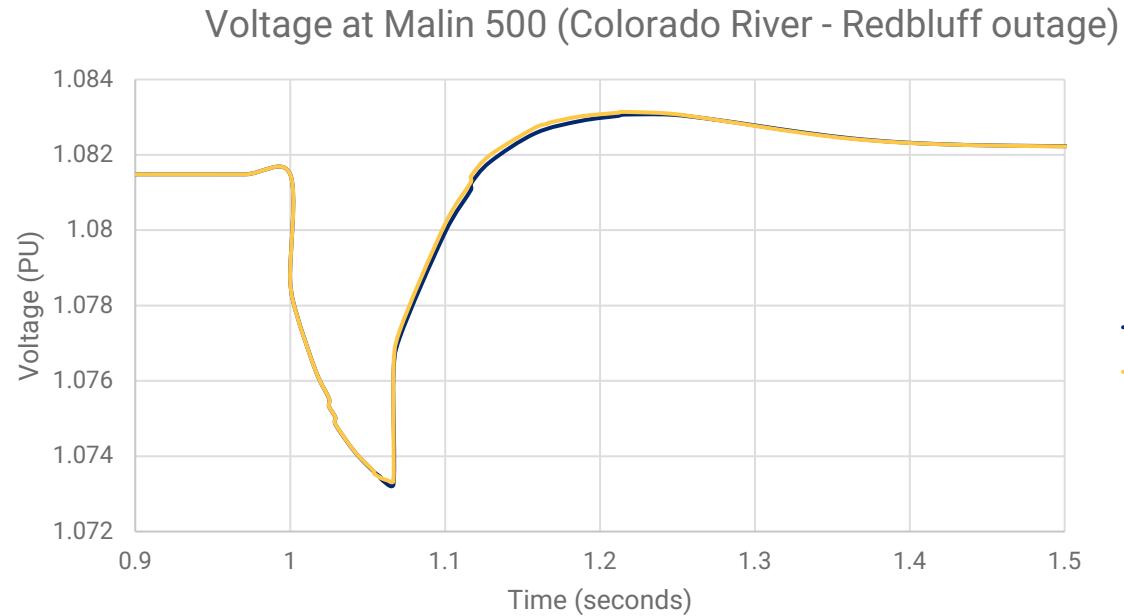
Large Load in Southern California (Colorado River - Redbluff outage)



Large Load in Southern California (Colorado River - Redbluff outage)



Colorado River –Redbluff: Load Details, Continued



Large Load in Southern California (Colorado River Red Bluf Outage)

Large Load in Southern California (Colorado River Red Bluf Outage)

Colorado River – Redbluff: Bus Voltage Details

Question for MVS

- Are there concerns with these differences?
- If not, are there concerns with implementing them in the WECC base cases?

WWW.WECC.ORG | (801) 582-0353

155 N 400 W, Salt Lake City, UT 84103, USA