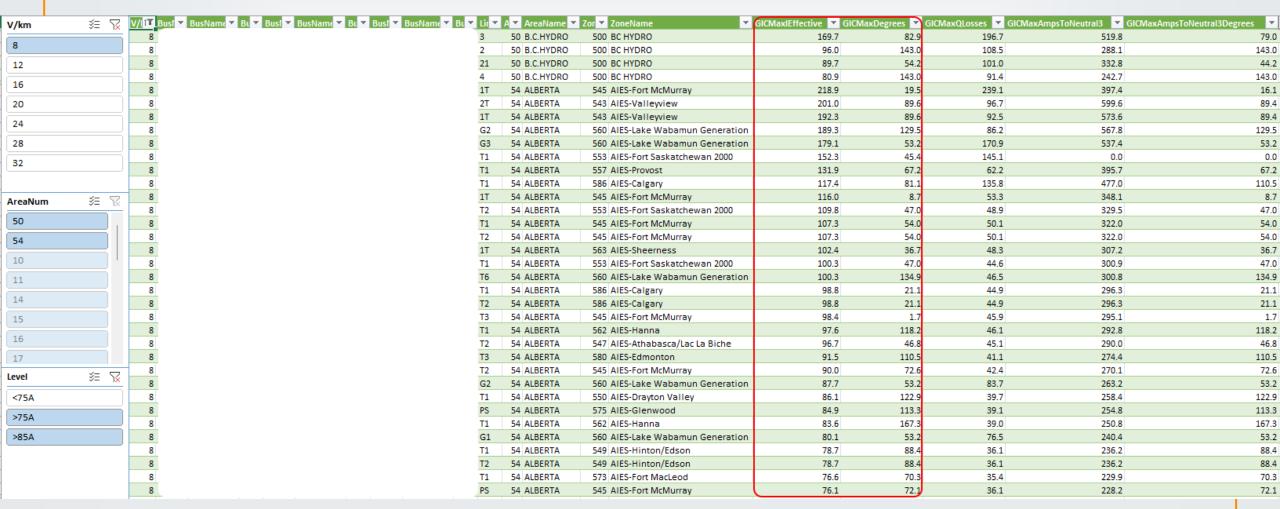
TPL-007 Screening

By: Ben Hutchins, RTPS WPP

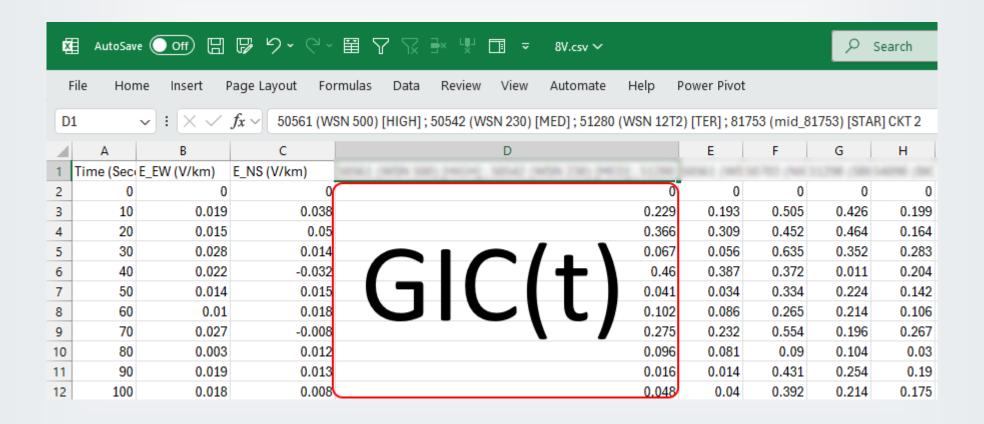
For: WPP Area 40 Team

Annual TPL-007 Data Screening


On 1-2 Ops Cases per Year (at Area 40 member discretion):

- For the base-case:
 - Save the case as [*.PWB, *.EPC, *.RAW] with [*.GIC (PSSE), *.GMD (PSLF)] formats, for all to use.
 - Export the GMD input-data from PowerWorld into XLSX, so members can view the current dataset.
 - Report any suspicious data, or data-errors, via a "SADD"-like script
 - For 8V/km & 12V/km (Informational purposes for members):
 - Report worst-case angle values for transformer GIC
 - Report worst-case angle values for area losses
- Combos of [8V/km and 12V/km] x [0, 30, 60, 90, 120, 150 deg]
 - Save each case with the added GIC transformer VAR losses included in the power flow case as *.PWB,
 *.EPC, *.RAW
 - Save GIC branch flows to CSV
 - Save VAR loss loads to CSV
 - Save GIC flows in a specific layout for GICHarm usage
- Use the PowerWorld "Auto-Insert Buses" feature to make a map diagram, to make the Lat/Long errors clear as day. Fix as needed, log which ones were manually adjusted by WPP-staff.
- Save out CSV time-series for transformers with GIC > 75A.
- Refresh an Excel summary sheet, that aggregates the results,
- Send results to WECC staff for posting on the base-cases page.

Main Results


TPL-007 Overview.xlsx -> Max XFMR GIC & Angle

Main Results

PW_GICXFormer_t/8V.csv PW_GICXFormer_t/12V.csv

_GMD Case Quality Check (WPP).py

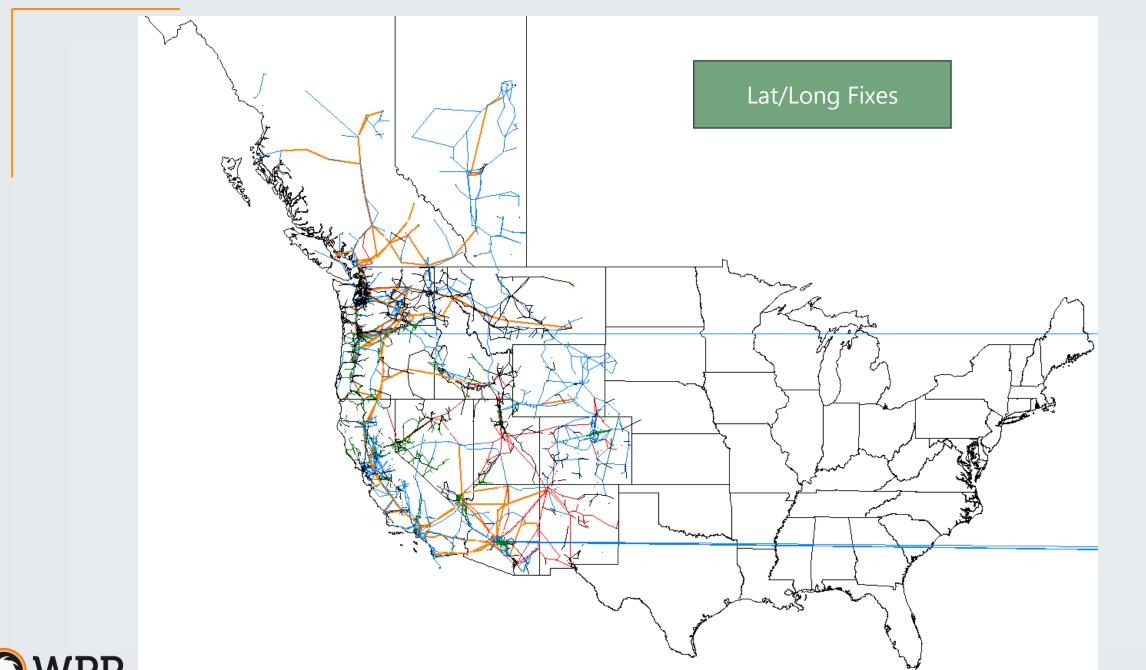
Tab	What's wrong?	How do you fix it?
	Any bus where there is equipment which may be grounded MUST have a defined substation	In the bus record, fill out the substation field, then define your
Bus - Undefined Sub	with a defined Rground.	Rground for your substation record.
Bus vs Sub - LatLong	The bus Lat/Long location is more than 0.5 miles away from the defined Substation.	Ensure the Bus has the same Lat/Long as its defined Substation.
	Example: Substation # 1 contains buses [12001, 12002, 12003].	In this example, you could change the Substation number to any of
SubNum not in BusNums	A substation number MUST be found in the list of buses which it contains.	these numbers: 12001, 12002, or 12003
Sub Missing Rground	Substation Rground is missing (null), or equal to zero.	Enter a measured or assumed value for Rground.
		You could either: 1) Ensure From/To buses are in the same
XFMR with Length	From/To buses are in different geographic lat/long locations. Threshold: 0.5 miles.	substation, or 2) Ensure the From/To have the same Lat/Long.
	The case has "Unknown" for:	
	GICCoreType (three-leg, etc),	
	XFConfiguration (Delta/Wye etc), or	
XFMR Missing Data	GICAutoXF (Yes/No is autotransformer).	Ensure all transformer data is filled out.
	Estimated length (miles) based on Lat/Long is very different from	
	Estimated length (miles) based on R/X.	
Line Length Suspect	Threshold: Absolute length difference > 0.5 miles, and ratio >1.5 or <0.5	Verify your branch R, X, B, and Lat/Long of From/To buses.
	1) DC Resistance should be lower than AC Resistance.	
Line R Suspect	2) DC Resistance should be within ~20% of AC Resistance.	Double-check your entry of R1 (positive sequence R) and Rdc.
	A line where From/To buses have different nominal kV values. This is a CRITICAL error as you	
Line Changes NomkV	cannot read the GIC model into GICHarm if you do this!	Open the branch, or change NominalkV to match.

00 Seed 25HS4a1.PWB GMD Case Quality Check.xlsx

Example Data Check

BusNumFr *	BusNameFrg *	NomkVFro *	BusNum 💌	BusNameT *	NomkVTc▼	Circui ▼	BranchDeviceType *	GICLineDistanceMile 🚚
148.00	74.54.660	13 4 4 4 4 4 4		Facilities and	100		TransformerWinding	884
							Transformer	527
							Transformer	263
							Transformer	229
							Transformer	221
							Transformer	221
							Transformer	212
							Transformer	212
				MOPT_DON			Transformer	192
	CURWIN WTS						TransformerWinding	162
							Transformer	158
							TransformerWinding	115
							TransformerWinding	115
							TransformerWinding	115
				\$500,76074			TransformerWinding	115
							Transformer	100
				MEAD 6			Transformer	98
							Transformer	98
27652						No.	Transformer	98
19673							TransformerWinding	72
20072							TransformerWinding	72
							Transformer	70
							Transformer	70
				TOPOCK			Transformer	63
				TOPOCK			Transformer	63
							TransformerWinding	37
							Transformor	20

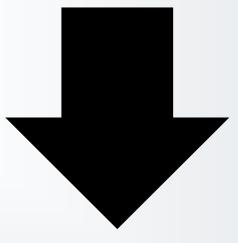
Data Scramble


- » Note: Around the time the 25HS4 case was built, there was a PSLF bug which re-sorted the values, causing all data for GIC to be scrambled.
- » WPP has replaced the 25HS4 GIC data by borrowing it from 25LS4 (which was created after the bug-fix).

Data Modifications to 25HS4 for the Screening

- » Line Resistances
 - » Rac < Rdc? Not possible. Skin effect. Set Rdc = Rac.
 - » Rac > 1.2 x Rdc? Unlikely. Set Rdc = Rac.
- » Lat/Long Errors
 - » R, X, B => "X" Mile long line
 - » Lat/Long => "Y" Mile long line
 - » If |X-Y| > 100 Miles... Ben tried to repair, or improve!
- » Unused GSUs
 - » Get opened (study precedence)
- » Substation Rground = 0, or Null
 - » Set to 0.1 Ohms (study precedence)
 - » Note, this only matters if there is a piece of equipment with a ground-path!

Sensitivity Tests


Line DC Resistances

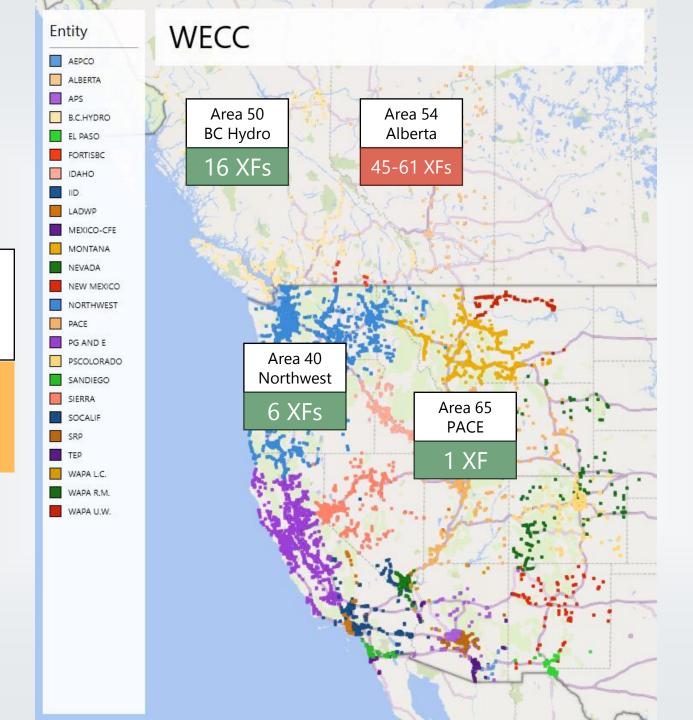
Lat/Long

Unused GSUs

Substation Rground

Least Impact

Most Impact



Sensitivity Tests

Transformers > 75A At 12V / km

Intention

See how modifying assumptions can impact results

Note

Very little difference in 40, 50, 65.

>75A									
Max o	f Case	-							
Arei√	WPP_Base_	12V	Orig_0	GSU_Statu	s_12V	Orig_LatI	ong_12V	Orig_Rdc_1	2V
65	,	75.5			75.4		75.5	,	75.5
>75A									
Max of	Case	-							
Area	WPP_Base_12\	/ Ori	g_GSU_	Status_12V	Orig_La	tLong_12V	Orig_Sub_	_Rground_12V	Orig_Rdc_12V
40	80.	1		80.1		80.1	L	80.8	80.1
40	106.	6		106.6	i	106.6	j	106.7	106.6
40	111.			111.1		111.1		111.4	111.1
40	86.	_		86.2	2	86.2	2	83.9	86.2
40	79.			79.4	1	79.5	j	79.5	79.5
40	. 8	2		82	2	86.7	7	80.7	82
	_							_	-
>75A									
Max of									
Areċ√T	WPP_Base_12V	Ori _{	g_GSU_	Status_12V	Orig_La			_Rground_12V	
50	84.4			84.4		84.4		84.4	
50	84.4			84.4		84.4		84.4	
50	75.			75.5		75.5		75.5	
50	101.			101.8		101.8		101.8	
50	100.4			100.4		100.4		100.4	
50	78.			78.7		78.7		78.7	
50 50	86.4 14			86.4 144		86.4 144		86.4 144	86.4 144
50 50	121.			121.3		121.3		121.3	
50	254.			254.6		254.6		254.5	254.6
50	98.			98.8		98.8		98.8	
50	134.			134.5		134.5		134.5	
50	86.			86.3		86.3		86.3	
50	76.			76.8		76.8		76.8	
50	7			77		77		77	
50	77.	2		77.2		77.2		77.2	77.2

Max of	f Case					Max of Case					
Areċ₊T	WPP_Base_12V	Orig_LatLong_12V	Orig_Rdc_12V	Orig_GSU_Status_12V	Orig_Sub_Rground_12V						Orig_Sub_Rground_12V
54	115	5 115	5 115	115	86.2		109				
54	79.6	79.6	6 79.6	94.5	86.6		110.8				
54	79.9	79.9	9 79.9	94.9	87		101.9				
54	103.3	3 103.3	3 103.3	3 103	91.2		101.9				
54	103.8	3 103.8	8 103.8	3 103.4	91.6		85.4				
54	228.4	1 228.4	4 228.4	240.5	200.1		86.4				
54	145	145	5 145	143.9	131.4		301.5				
54	105.7	7 105.7	7 105.7	7 105.7	7 87.4		288.4				
54	283.9	283.9	9 283.9	280	161.8		147.6				
54	150.4	150.4	4 150.4	161.6	97.3		75.7				
54	164.7	7 164.7	7 164.7	7 176.9	106.5		86				
54	127.4	1 127.4	4 127.4	127.1	92.2		84.9				
54	176.1	176.1	1 176.1	176.1	142.1	. 54	98.6				
54	76.6	76.6	6 76.6	93.5		54	102.7				
54	82.5	82.5	5 82.5	100.8		54	114.1				
54	137.2	2 137.2	2 137.2	162.7	7 84.4	54	85				
54	85	5 85	5 85	90.7		54	97.3				
54	268.7	7 268.7	7 268.7	7 204.4	198.6	54	174				
54	120.2	2 120.2	2 120.2	91.4	1 88.8	54	153.6	153.6	153.6		
54	131.6	5 131.6	6 131.6	100.1	97.3	54	220.4	220 6	220.4	100.3	
54	96.5	96.5	5 96.5	/		54	328.4				
54	96.5	96.5	5 96.5	/		54	197.9				
54	161	155.6	6 161	161	116.4	54	125.4				
54	161	155.6	6 161	161	116.4	54	146.4	146.4	146.4		
54	100.2	2 100.2	2 100.2	2 100.2	√ V	54	92.9	92.9	92.9	380.4	
54	82.9	82.9	9 82.9	82.9	/	54	92.9				
54	84.6	5 84.6	6 84.6	84.7		54	92.9				
54	109	109	9 109	109	125.6	54	84	84	84	84	
54	110.8	110.8	8 110.8	3 110.8	127.7						
N. C.				ote							

NoteSome big differences in Alberta, Area 54

Next Step...

Harmonic Screening! (TBD)

Transformer Data Checks

Trying to run a GICHarm screening...

III Info

Only 2 iteration(s) were completed. Some THD values exceeded the threshold for problematic values. Check problematic_thdv_busbars.csv file.

OK

X

Transformer Table

B: Magnetizing Susceptance MVA Base: 100 MVA

GSU that acts like a 35 MVAR Capacitor!!!

-0.15750 -0.15000 -0.12913 -0.12300 -0.12300 -0.105

-0.12913 -0.12300 -0.10690 -0.09312 -0.09312 -0.09312 -0.08860 -0.07760 -0.07728 -0.07650 -0.07574-0.07085 -0.07085 -0.07056 -0.06888 -0.06660 -0.06557 -0.06357 -0.06357 -0.06120 -0.06120 -0.06120 -0.05932 -0.05739 -0.05739 -0.05358 -0.05240 -0.05130 -0.05040 -0.04775-0.04680 -0.04622-0.04567-0.04560

> -0.04550 -0.04545 -0.04522

Mag B

-0.31620 -0.21605 -0.20000 -0.18750 -0.18655 -0.18200

-0.15998

