

Addressing Hydropower Modeling Gaps with Hy-DAT

Dewei Wang

PNNL is operated by Battelle for the U.S. Department of Energy

Status of Hy-DAT:

- The tool is externally accessible: https://hy-dat.pnnl.gov
 - ✓ Invite-only access (email required)
- Overview of the tool and project:
 - ✓ https://www.pnnl.gov/projects/improving-
 hydropower-models-
 hydropower-models-
 support-resilient-grid

 Hy-DAT is a tool to update the existing steady state and dynamic model using Interdependency, Efficiency Curves, and Unit Dispatch Models.

Hy-DAT in HASP:
 Generate Accurate
 Representative Model for
 Power System Simulation

How does Hy-DAT work:

SQL Based Database

The Database contains three major sections:

- Plant-level data:
 - ✓ Timeseries and Generic hydrological data
 - ✓ Released: 23 WI plants, 10 years of data (2013-2023)
 - ✓ Upcoming: 14 El plants, 3 years of data (2022-2025)
- Unit-level data:
 - ✓ Timeseries and Static electrical data, Planning cases
 - ✓ Released: 27 WI plants
 - ✓ Upcoming: 13 El plants
- Others:
 - ✓ Efficiency curves: calculated efficiencies of individual generators
 - ✓ **Interdependency**: correlate the generation patterns of the upstream and downstream rivers
 - ✓ Dispatch models: relationship between the hydrological and electric data

Interdependency (Data-Driven)

Train: Build a time correlation between streamflow data

- Evaluate overall correlation between upstream and downstream plants
- Divide power outputs into four seasons and piecewise head ranges
- Build linear regression correlations for each head range and season

Apply:

 When conducting dispatching, check the restriction from the upstream plant on the power output

Efficiency Curve

- Efficiency Curve Evaluation:
 - Efficiency curves for different turbines and different head conditions were estimated with HydroGenerate.
- Apply: dispatch results will be validated with online units' efficiency curves

Regression Model

• DNN-based regression models were built to correlate water head, total power output, water storage with individual generator's status and power output.

C0-Num	C1-Num	C2-Num	C3-Num	C0-MW	C1-MW	C2-MW	C3-MW
0	0	2	15	0±8.4417	0±90.696	780.72±240.32	1468.1±79.287
0	0	2	15	0±8.4417	0±90.696	749.07±240.32	1459.8±79.287
0	0	2	15	0±8.4417	0±90.696	807.18±240.32	1518.2±79.287

4. Break Groups into Units

2. Train Group-based Model outputs

	power	head	storage
	2086	326.8	8802.12
Step 1:	1852	328	8809.95
	1829	328.9	8809.95

Model inputs

C1-Exist	C1-MW	C1-unitMW
0	0	0
1	12	4
1/	28.43	14.215

Project	Unit ID	Head (ft)	P_{max} (MW)	Dispatch Status	$P_{gen\ calculated}(\mathrm{MW})$	$P_{max,available}$ (MW)
Plant A	1-1	307.1	707	1	361	513.65
Plant A	2-1	307.1	707	1	361	513.65
Plant A	3-1	307.1	707	1	361	513.65
Plant A	4-1	307.1	825.7	0	0	599.88
Plant A	5-1	307.1	825.7	1	553.97	599.88
Plant A	6-1	307.1	825.7	1	553.97	599.88
Plant A	7-1	307.1	125	1	79.48	90.81
Plant A	7-2	307.1	125	1	79.48	90.81
Plant A	7-3	307.1	125	1	79.48	90.81

Model inputs

power	head	storage
2086	326.8	8802.12
1852	328	8809.95
1829	328.9	8809.95

Step 2:

C1-Exist	C1-MW	C1-unitMW
0	0	0
1	12	4
1	28.43	14.215

Model outputs

Functions of Hy-DAT:

- Landing page (<u>https://hy-dat.pnnl.gov/home</u>):
 - ✓ Provides quick instructions and a detailed User Guide (PDF)
- Visualization (https://hy-dat.pnnl.gov/timeseries):
 - ✓ View general information about hydro plants and generators
 - ✓ Visualize historical hydropower data for a selected time period
- Dispatching (<u>https://hy-dat.pnnl.gov/steadystatedispatch</u>):
 - ✓ Perform dispatching of one or more hydro plants based on userdefined inputs (e.g., water head, dispatch threshold, season, storage)
 - ✓ Results are "dispatch status" and "unit-level power", can be exported for further analysis
 - ✓ There are one-click "Dispatch All" and "Export All" buttons allow fast analysis across many plants

On the "TimeSeries" Page, users can:

- 1. Select multiple plants
 - visualize their location
 - display plant-level generic information
- 2. Select specific unit/generator
 - display its nominal power, etc.
 - visualize its efficiency curve
- 3. Select multiple hydrological parameters and date range
 - visualize and export historical recordings of each hydro-power variable

On the "Steady State Dispatch" Page, users can:

1. Select plants to be dispatched

 specify year, season and general dispatch threshold (reference and valid ranges provided)

2. Check interdependency

adjust dispatch threshold accordingly

3. Conduct dispatching

predict group-based dispatch results

4. Check with efficiency curves

adjust results to satisfy generators' efficiency curves

5. Distribute within groups

- randomly distribute dispatch power to individual units
- 6. Quick analysis: "Dispatch All", "Export All"

- Accessing Hy-DAT (https://hy-dat.pnnl.gov):
 - Guest provides the owner (dewei.wang@pnnl.gov) with an email (must be registered with Microsoft Teams)
 - Owner sends an invitation (see instructions on the right)
 - Guest follows the registration steps provided in the invitation email
 - With Microsoft Teams running in the background, the guest should be able to access the Hy-DAT tool

Note. A more detailed instruction PDF is attached for reference.

How will Hy-DAT be improved in FY26 and FY27:

Upcoming Changes in FY26 and FY27

- Eastern interconnection data has been collected, will be analyzed and added to Hy-DAT.
- Users will be able to upload and use their own data in the tool