Impact of Representing Hydrological Information in Power System Model Files (Steady-state and Dynamic)

In Collaboration with V&R Energy

Pacific Northwest

Soumyadeep Nag, S M Shafiul Alam

Presentation prepared by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. Work supported through the U.S. Department of Energy Water Power Technology Office HydroWIRES Lab Call.

Representing Water Level Information in Power

System Files

Procedures for model update

- Water levels change seasonally, annually and are diverse across geographic regions
- Maximum power output in power system model files is constant and does not reflect this variation
- For long time planning problems, considering variations in hydropower availability is crucial

Reliability estimation using N-1 Contingency analysis and

Cascading analysis

Cascading

N-1 Contingency analysis

- # critical contingencies

Cascading Failure analysis

- # Events leading to Cascading,
- # Formation of Islands,
- # Cascading instabilities

Voltage violation index:

$$\%violation = \frac{Measured - Limit}{Limit} \times 100\%$$

Thermal violation index:

$$%violation = \frac{Flow - Rated\ capacity}{Rated\ capacity} \times 100\%$$
Case files

Water Level Sensitivity Analysis WECC

Impact of representing low water conditions (70%, 75%, 80%) over regions of the WECC system (V&R Energy POM)

2032 Heavy Summer: Base case Total Critical Contingencies = 35

2032 Heavy Summer: Base case = 43, 2025 Heavy Summer: Base case = 37

Events leading to Islanding, cascading failure and instability

Gap in Dynamic Model for Water Head

Pacific Northwest
NATIONAL LABORATORY

Commonly used governor structures that do not allow head variation

and/or turbine non-linearities (PSS/E v35.5)

HYGOV (WI: 26.7%, EI: 64.3%)

IEEEG3 (WI: 7%, EI: 2.2%)

HYG3 (WI: 26.7%, EI: 64.3%)

Code modifications for representing hydrological conditions – Pmax estimation

Milestone: Identify additional code modification beyond Pgen, Pmax and H_0 derating. Develop codes to integrate tailrace and other hydrological conditions in updating the standard hydropower plant steady-state and dynamic models.

Results showing system center of inertia frequency after disconnection of 2 Palo Verde units (PSS/E v35.5)

Key take aways:

- 32HS and 31HW have different frequency response profiles due to the difference in generation resources
- Frequency nadir decreases with lower water levels
- Winter conditions display lower frequency nadir but higher damping than the summer conditions

Mechanical power response comparison

All mechanical responses have been normalized with their initial values (PSS/E v35.5)

A – Slow controller fails to compensate for the reduction in head.

B – Aggressive Controller responds to excessive frequency dip and overcomes the effect of head reduction. Oscillatory response due to over-active controller.

C – Aggressive controller without reserves saturates

Key take away:

- 89.56% are slow controllers that cannot compensate the response rate for the change in head

Conclusions

- Findings and Impacts
 - Hydrological conditions are not represented in either steady-state or dynamic files
 - Using designed tools, power system files can be modified to represent hydrological conditions in both steady-state and dynamic representations
 - Analysis using both steady-state and dynamic representations show significant deviations from uninformed representations (cascading, contingency and dynamic frequency response analysis)
 - Retired models

