Grid Oscillations and Hydropower Operations Shuchismita Biswas and Kaustav Chatterjee Sep 12, 2025 PNNL is operated by Battelle for the U.S. Department of Energy #### **Project Overview** #### Background: - The grid is changing (generation mix, large electric loads, etc.) and so is its dynamics. - System operators have limited understanding of how hydrological conditions impact the dynamic behavior of hydropower plants and grid oscillatory stability. - The DOE WPTO is funding an effort to investigate how the oscillatory behavior will be impacted by hydro-operations. - Knowledge share among PNNL and Norwegian universities – NTU and UiA. #### Nordic electricity production by energy source and country, 2021 Norway generation primarily comprises hydro and wind. Thus, the Nordic grid provides a forward-looking benchmark that US power system planners and operators can study and learn from. #### Overarching questions: - How will changing generation mix and different hydrological conditions impact oscillations in the future grid? - How can hydro-units be leveraged to mitigate oscillations and improve grid stability and reliability? - How can slow-acting hydro and fast acting-inverters be optimally coordinated to ensure grid stability? - What can US power system operators learn from the Norwegian experience? #### **Risks Associated with Oscillations** | Frequency | Behavior of Hydro-resources | Interaction with Other Grid
Components | Research Gaps | |---|--|---|---| | < 0.1 Hz Ultra low-frequency oscillations (ULFO) | Negative damping from
mistuned hydro-governors
and water-hammer effect
in hydro-turbine | Emerging risks from forced
oscillations induced by
slow-periodic AI loads in
data centers | Challenging to isolate ULFO from changes due to redispatch/other operations | | 0.1 – 2 Hz Electro- mechanical range | Hydrological conditions
impact damping of inter-
area and local modes Forced oscillations induced
by rough zone operation | Forced oscillation
resonance with poorly-
damped system modes | Representing hydrological conditions in planning cases | | > 5 Hz Sub-synchronous oscillations (SSO) | Excitation of torsional modes induces shaft stress in hydro-turbines SSOs from variable speed hydro | Torsional interactions from
large load-induced
oscillations Control interactions with
other power electronic
resources | Understanding the impact of LL-induced oscillations on torsional modes | ## Impact of Hydrological Conditions on Oscillation Modes - Varying waterhead impacts system dynamics in two ways - Impact of waterhead on machine swing dynamics (system-independent) - Impact of generator redispatch (system-dependent) - How varying hydrological conditions will impact oscillatory behavior will depend on both factors, making generic conclusions difficult. - Not incorporating hydrological conditions into planning cases may lead to incorrect conclusions about grid stability. ### Impact of Water Head on Swing Mode Single Machine Infinite Bus representation. #### Impact of Varying Waterhead on the Nordic Grid - PSLF studies on the reduced Nordic44 grid model - Hydro-governors represented by HYGOV model - Model comprises 80 generators and 48 loads - Total generation: 39.2 GW, Hydro share: 27 GW - For many hydro units, Pgen well below Pmax ### **Simulated Hydrological Conditions** - Two cases created water head varied to 80% and 70% of nominal; headroom maintained at 20% - Reduction in hydro-output compensated by non hydro units Generation change from the base case. Blue indicates decrease, red indicates increase. Circle sizes proportional to change. ## **Observed Changes in Oscillation Modes** - Increasing trend in frequency. - Trend not clear in damping ratio obscured by power flow changes. - In this work all non-hydro units have been proportionally redispatched. It will be important to check realistic redispatch. #### **Next Steps** - Study with the WECC-240 bus system and full WECC model - Model and scripts to be made publicly available - Studying the impact of interactions between emerging resources and hydrounits - Oscillations in sub-synchronous range ## Thank you