

Grid Oscillations and Hydropower Operations

Shuchismita Biswas and Kaustav Chatterjee Sep 12, 2025

PNNL is operated by Battelle for the U.S. Department of Energy

Project Overview

Background:

- The grid is changing (generation mix, large electric loads, etc.) and so is its dynamics.
- System operators have limited understanding of how hydrological conditions impact the dynamic behavior of hydropower plants and grid oscillatory stability.
- The DOE WPTO is funding an effort to investigate how the oscillatory behavior will be impacted by hydro-operations.
- Knowledge share among PNNL and Norwegian universities – NTU and UiA.

Nordic electricity production by energy source and country, 2021

Norway generation primarily comprises hydro and wind.

Thus, the Nordic grid provides a forward-looking benchmark that US power system planners and operators can study and learn from.

Overarching questions:

- How will changing generation mix and different hydrological conditions impact oscillations in the future grid?
- How can hydro-units be leveraged to mitigate oscillations and improve grid stability and reliability?
- How can slow-acting hydro and fast acting-inverters be optimally coordinated to ensure grid stability?
- What can US power system operators learn from the Norwegian experience?

Risks Associated with Oscillations

Frequency	Behavior of Hydro-resources	Interaction with Other Grid Components	Research Gaps
< 0.1 Hz Ultra low-frequency oscillations (ULFO)	 Negative damping from mistuned hydro-governors and water-hammer effect in hydro-turbine 	 Emerging risks from forced oscillations induced by slow-periodic AI loads in data centers 	Challenging to isolate ULFO from changes due to redispatch/other operations
0.1 – 2 Hz Electro- mechanical range	 Hydrological conditions impact damping of inter- area and local modes Forced oscillations induced by rough zone operation 	 Forced oscillation resonance with poorly- damped system modes 	Representing hydrological conditions in planning cases
> 5 Hz Sub-synchronous oscillations (SSO)	 Excitation of torsional modes induces shaft stress in hydro-turbines SSOs from variable speed hydro 	 Torsional interactions from large load-induced oscillations Control interactions with other power electronic resources 	Understanding the impact of LL-induced oscillations on torsional modes

Impact of Hydrological Conditions on Oscillation Modes

- Varying waterhead impacts system dynamics in two ways
 - Impact of waterhead on machine swing dynamics (system-independent)
 - Impact of generator redispatch (system-dependent)
- How varying hydrological conditions will impact oscillatory behavior will depend on both factors, making generic conclusions difficult.
- Not incorporating hydrological conditions into planning cases may lead to incorrect conclusions about grid stability.

Impact of Water Head on Swing Mode

Single Machine Infinite Bus representation.

Impact of Varying Waterhead on the Nordic Grid

- PSLF studies on the reduced Nordic44 grid model
- Hydro-governors represented by HYGOV model
- Model comprises 80 generators and 48 loads
- Total generation: 39.2 GW, Hydro share: 27 GW
- For many hydro units, Pgen well below Pmax

Simulated Hydrological Conditions

- Two cases created water head varied to 80% and 70% of nominal; headroom maintained at 20%
- Reduction in hydro-output compensated by non hydro units

Generation change from the base case. Blue indicates decrease, red indicates increase. Circle sizes proportional to change.

Observed Changes in Oscillation Modes

- Increasing trend in frequency.
- Trend not clear in damping ratio obscured by power flow changes.
- In this work all non-hydro units have been proportionally redispatched. It will be important to check realistic redispatch.

Next Steps

- Study with the WECC-240 bus system and full WECC model
- Model and scripts to be made publicly available
- Studying the impact of interactions between emerging resources and hydrounits
- Oscillations in sub-synchronous range

Thank you

