IEEE Type C Excitation Limiter Transient Stability Models OEL / UEL / SCL

May 8, 2025 (WECC MVS)
Saurav Mohapatra, PhD, PE
Software Engineer
saurav@powerworld.com

2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com http://www.powerworld.com

Based on IEEE Std 421.5™-2016

IEEE STANDARDS ASSOCIATION

♦IEEE

IEEE Recommended Practice for Excitation System Models for Power System Stability Studies

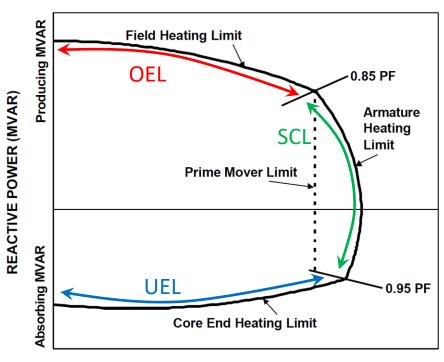
IEEE Power and Energy Society

Sponsored by the Energy Development and Power Generation Committee

IEEE 3 Park Avenue New York, NY 10016-5997 USA IEEE Std 421.5™-2016 (Revision of IEEE Std 421.5-2005)

https://doi.org/10.1109/IEEESTD.2016.7553421

Excitation Limiters



OEL: Over Excitation Limiter

UEL: Under Excitation Limiter

SCL: Stator Current Limiter

- Related to a generator's steady state limits enforced by a capability curve (Mvar vs MW plot)
- Limits are time-varying and have entire control systems enforcing each segment

REAL-POWER OUTPUT (MW)

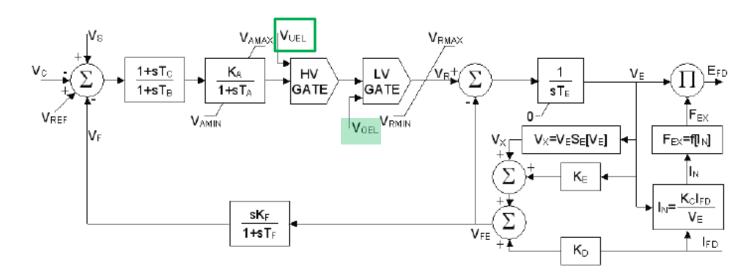
https://en.wikipedia.org/wiki/Capability_curve#/media/File:Capability_curve_of_an_electrical_generator.png

Outline

- Type C exciters have configurable OEL/UEL/SCL input location, depending on the OEL/UEL/SCL input parameter flags.
- Limiter's MAX/MIN must align with input location at the exciter.
- Understand the limiter's mode of action at the exciter.

- Will not discuss OEL, UEL and SCL models' initialization.
- Will not discuss how to tune the internals of limiters.

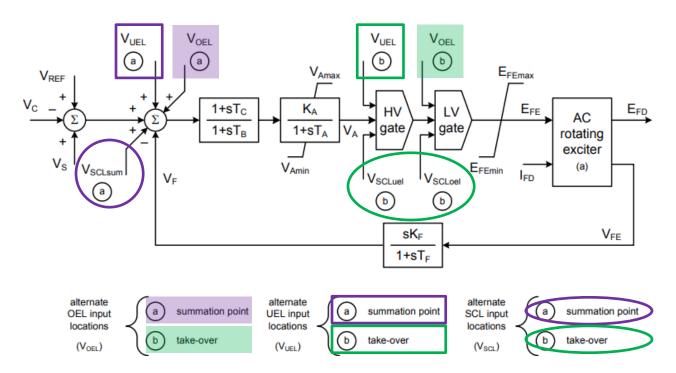
IEEE Type C Exciter Models



- Type DC—Direct current commutator rotating (DC1C, DC2C, DC4C)
- Type AC—Alternator supplied rectifier
 (AC1C, AC2C, AC3C, AC4C, AC5C, AC6C, AC7C, AC8C, AC9C, AC10C, AC11C)
- Type ST—Static excitation systems (ST1C, ST2C, ST3C, ST4C, ST5C, ST6C, ST7C, ST8C, ST9C, ST10C)
- What's different?
- Can be configured to accept the limiter (OEL, UEL and SCL) input at one of multiple input locations.

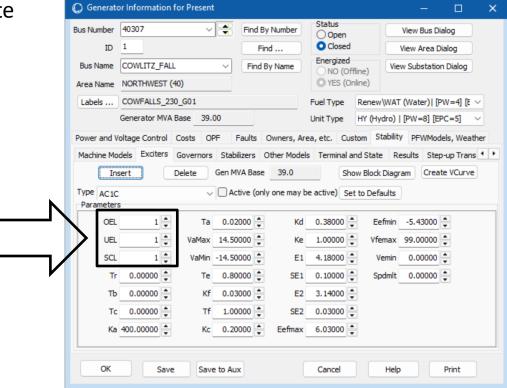
Exciter AC1A

- AC1A is from IEEE Std 421.5™-2005
 - OEL input is only possible at take-over gate
 - UEL input is only possible at take-over gate
 - SCL input is absent
- Available as ESAC1A in PW, PSSE, PSLF

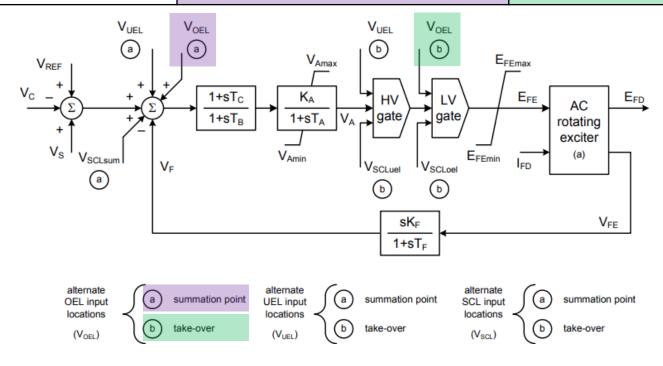


Superseded by AC1C from IEEE Std 421.5™-2016

Exciter AC1C


- AC1C is from IEEE Std 421.5™-2016
 - OEL input is possible at (a) summation point, or (b) take-over gate
 - UEL input is possible at (a) summation point, or (b) take-over gate
 - SCL input is possible at (a) summation point, or (b) take-over gate

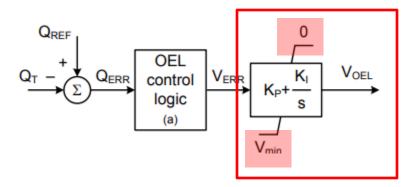
Input Parameters Exciter AC1C


- Flags to indicate the configured input location for OEL / UEL / SCL
 - Input Flag = 1: Summation Point
 - Input Flag = 2: Take-over gate

Input Locations for OEL Exciter AC1C

	OEL input at Summation Point	OEL input at Take-over Gate
OEL NOT Limiting	VOEL = 0	VOEL ≥ VA
OEL Limiting	VOEL < 0	VOEL < VA
Exciter Signal	VREF – VC + VOEL	MIN(VA, VOEL)

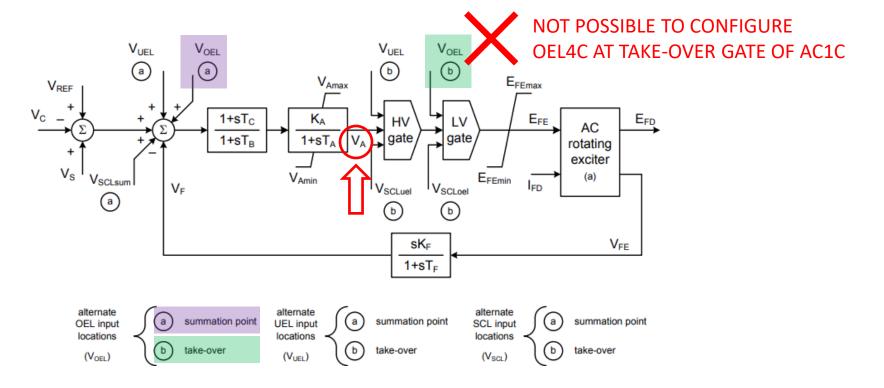
IEEE Type C Limiter Models



- Over Excitation Limiters
 OEL2C, OEL3C, OEL4C, OEL5C
- Under Excitation Limiters UEL2C
- Stator Current Limiters SCL1C, SCL2C

Over Excitation Limiter OEL4C

- Exciter model OEL input flag must be configured appropriately!
- OEL4C can only be included at a summation point at the exciter model
- Note: Hardcoded upper limit on PI-block and Vmin < 0.
 - → VOEL is always \leq 0.

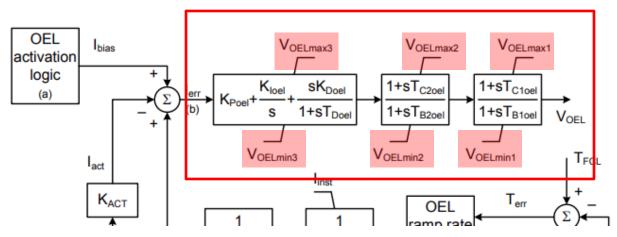


• OR Exciter model has OEL input only at summation point

Exciter-Limiter Pair: AC1C + OEL4C

	OEL input at Summation Point	OEL input at Take-over Gate
Assuming normal	VREF-VC value is not affected	Initial VA value is a positive
condition for OEL4C		LV gate curtails this!!!!!
initialization, VOEL = 0	ОК	NOT VALID

Over Excitation Limiter OEL2C



- VOEL output from OEL2C can be an input at
 - either

(a) summation point,

or

- (b) take-over gate
- Exciter OEL Input Flag needs to be set correctly.
- OEL2C parameters VOELmax1/2/3 and VOELmin1/2/3 must be coordinated with the specific exciter model instance.
- OEL2C internals (logic, lookup, etc), and the power flow state also need to be coordinated with true constraints of the excitation system.

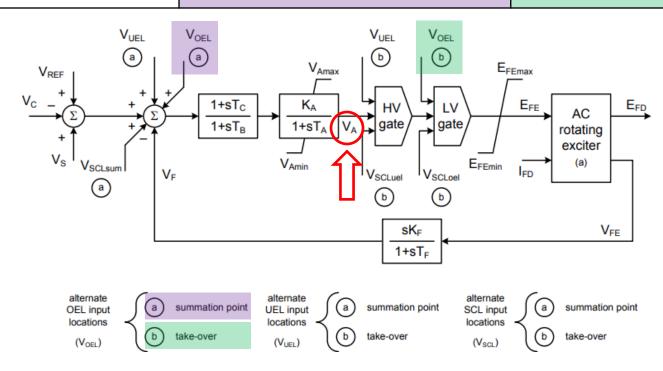
Limiter-Exciter Pair: OEL2C + AC1C

Assuming normal condition for OEL2C initialization,

VOEL = VOELmax1

OEL input at **Summation Point**

To ensure that Vref-Vc value is not affected,


VOELmax1 must be 0

VOELmin1 must be < 0

OEL input at **Take-over Gate**

Initial VA value is a positive
For VA to not get curtailed,
VOELmax1 must be ≥ VA
VOELmin1 must be < VOELmax1

Limiter-Exciter Pair Compatibility

	Exciter is configured for Limiter input at Summation Point	Exciter is configured for Limiter input at Take-over Gate
Limiter can only feed into summation point (OEL4C, SCL1C)	Limiter OK	Limiter NOT VALID
Limiter can feed into either summation point or take-over gate depending on output limits (OEL2C, OEL3C, OEL5C, UEL2C, SCL2C)	OELMAX must be = 0 OELMIN must be < 0 UELMAX must be > 0 UELMIN must be = 0	OELMAX must be ≥ exciter "VA" OELMIN must be < OELMAX OELMAX must be > OELMIN UELMIN must be ≤ exciter "VA"

PowerWorld Specific Implementation Details

- Type C Limiters can be used with Type C Exciters, and also older Exciters
- PowerWorld Transient Stability Tool has several checks
 - Validation and Autocorrection (<u>BEFORE initialization</u>):
 - (i) Ensures limiter is suitable for exciter, and
 - (ii) Ensures limiter MAX/MIN limits are consistent if exciter is configured to receive input signal at summation point.
 - Initial Limit Modification (<u>DURING initialization</u>, selected by default):
 - (i) If the limiter initializes "normally", then OELMAX and UELMIN are modified
 - (ii) OELMIN and UELMAX are NOT modified

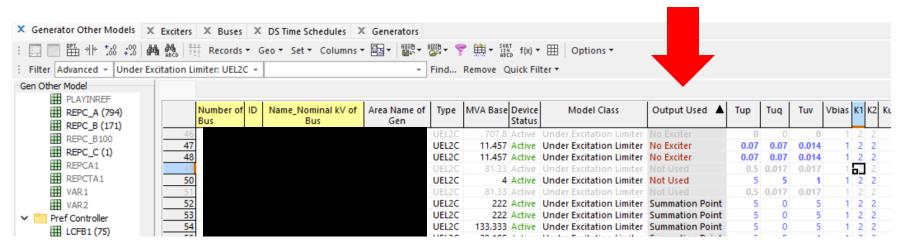
Detailed messages are added in the log

Case Information Displays

All limiters have internally maintained string field called "Output Used".
 This is used for Validation and Autocorrection.

Summation Point: Active Exciter is receiving signal

Takeover Gate: Active Exciter is receiving signal


No Input: Active Exciter does not have any input location for this signal

Not Used: Active Exciter is configured to ignore this signal

Not Suitable: Active Exciter is not suitable for this type of signal

Not Configured: Active Exciter is not configured for this type of signal

No Exciter: Active Exciter is absent

