

AN OVERVIEW OF GENERATOR MODEL VALIDATION PROCEDURE

Using GENQEC Model

Michael Xia

Compliance Services, Powertech Labs

Michael.Xia@powertechlabs.com

MODEL VALIDATION PROCEDURE

NERC Reliability guideline – Power Plant Model Verification and Testing for synchronous Machines July 2018

Generator Open Circuit Magnetization (Saturation) Test

V-Curve and Reactive Limits

Stator Current Interruption Test

Etc.

(i.e. Open Circuit Saturation Test)

(i.e. Online Measurement Test)

(i.e. D-axis Test)

Field testing procedure is no different between GENQEC model and other models

- Unit is operated at full speed, no load (FSNL) with the generator main breaker open
- AVR is typically in manual mode and at minimum setpoint
- Raise the terminal voltage from minimum to maximum with sufficient samples in air-gap and saturated region.

Validation Steps:

Plot the Vt (generator field voltage) vs If (generator field current) curve

- Determine Air-gap line Vt/If ratio
 - Generator field current base Ifbase
 - Generator field voltage base Vfbase

- **Determine Saturation**
 - Type: Exponential, Scaled Quadratic, Quadratic
 - S(1.0) and S(1.2)

- 1. Dispatch unit at different loading conditions (e.g., minimum, 50% and full load)
- At each loading level, swing reactive power output from maximum leading to lagging or vise versa
- 3. Take measurement at each steady state condition

- Dispatch unit at different loading conditions (e.g., minimum, 50% and full load)
- At each loading level, swing reactive power output from maximum leading to lagging or vise versa
- Take measurement at each steady state condition

Vt (kV)	P(MW)	Q(MVA)	Ifd (Amps)
21.11	12.31	8.42	1107.76
21.10	1.06	8.50	1104.68
20.27	0.72	-59.83	582.54
20.82	49.24	-15.86	969.45
20.98	49.50	-1.22	1075.35
21.68	49.49	59.6	1558.23
20.35	49.12	-50.09	729.59
21.04	103.28	1.45	1229.52
21.83	103.22	71.06	1745.77
20.25	102.68	-55.86	894.78
20.24	157.42	-55.06	1160.5
20.99	159.17	5.13	1453.53
21.73	160.32	70.39	1879.05
21.49	219.56	53.6	1959.95
21.04	220.05	14.18	1754.57
20.91	220.05	3.57	1706.06
20.15	219.32	-56.7	1484.99
19.97	249.29	-70.94	1628.12
20.90	250.22	2.85	1859.76
22.02	249.36	101.99	2426.2
21.87	248.83	90.17	2330.96
20.45	0.71	-48.33	670.32

- Input generator model information
 - MVA base
 - Vt base
 - Ra
 - Χl
 - Xq
 - S(1.0), S(1.2), Sat-type (from previous validation test)

- Input test data
 - Vt (kV)
 - P (MW)
 - Q (MVAR)
 - If (ADC)

Vt (kV)	P(MW)	Q(MVA)	Ifd (Amps)
21.11	12.31	8.42	1107.76
21.10	1.06	8.50	1104.68
20.27	0.72	-59.83	582.54
20.82	49.24	-15.86	969.45
20.98	49.50	-1.22	1075.35
21.68	49.49	59.6	1558.23
20.35	49.12	-50.09	729.59
21.04	103.28	1.45	1229.52
21.83	103.22	71.06	1745.77
20.25	102.68	-55.86	894.78
20.24	157.42	-55.06	1160.5
20.99	159.17	5.13	1453.53
21.73	160.32	70.39	1879.05
21.49	219.56	53.6	1959.95
21.04	220.05	14.18	1754.57
20.91	220.05	3.57	1706.06
20.15	219.32	-56.7	1484.99
19.97	249.29	-70.94	1628.12
20.90	250.22	2.85	1859.76
22.02	249.36	101.99	2426.2
21.87	248.83	90.17	2330.96
20.45	0.71	-48.33	670.32

- Estimate Xd, Ifbase and Kw
- Estimated Xd and Kw can also be validated via simulation software
 - Setup the power flow for each steady state condition
 - Simulate no fault flat run
 - Export generator field current result

D-AXIS TEST

- Operate the unit close to 0 MW and leading reactive power
- AVR is in manual mode (field voltage, field current or firing angle control)
- Open the generator breaker to reject load and keep unit FSNL

D-AXIS TEST

Validation Steps:

- Setup the power flow matching the pre-test condition
- Create load rejection contingency and other simulation file
- Use estimated Xd, Kw and rest model parameters to perform simulation

The Power of Trust. The Future of Energy.

OTHER TYPICAL TESTS

Load rejection test - To Validate H and Q-axis parameters:

- Test procedure
 - Operate the unit at partial load (5% to 20%) and leading reactive power (such that It is on q-axis)
 - AVR is in manual mode
 - Open the generator breaker to reject load and keep unit FSNL
 - Record Vt, P, Q, If, Vf, and F
- Validation steps
 - Setup the power flow matching the pre-test condition
 - Create load rejection contingency and other simulation file
 - Compare F simulation result to validate H
 - Compare Vt simulation result to validate q-axis parameters

OTHER TYPICAL TESTS

Excitation removal test - To Validate T'do:

- Test procedure
 - Operate the unit at full speed no load with GCB open
 - Operate the generator terminal voltage at around 1 pu
 - Turn off excitation and keep turbine running
 - Record Vt, If, Vf, and F
- Validation steps
 - Setup no load power flow case
 - Create excitation removal contingency
 - Compare Vt simulation result to validate T'do
 - Correct T'do to standardized temperatures for thermal or hydro unit

REFERENCES

- [1] Reliability Guideline Power Plant Model Verification and Testing for Synchronous Machines, NERC, July 2018
- [2] IEEE Guide for Test Procedures for Synchronous Machines Including Acceptance and Performance Testing and Parameter Determination for Dynamic Analysis, IEEE 115-2019
- [3] "A new high accuracy generator dynamic model", Quincy Wang, Song Wang, IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) 2018, October 7-10, 2018, Kota Kinabalu, Sabah, Malaysia

Powertech

The Power of Trust. The Future of Energy.