

WEEC MVS Meeting September 11, 2025

Introduction of HVDC Model Specification VHVDC_A1

Presenter: Wei Du and Quan Nguyen *Pacific Northwest National Laboratory*

Standard Library HVDC and MTDC Models for Transmission Systems Planning Studies

- Sponsors: DOE wind office (WETO) and grid deployment office (GDO)
- Objectives:
 - Collaborate with HVDC manufacturers, software vendors, transmission planners, and research institutes to develop HVDC and MTDC models
 - Seek model approval by WECC Modeling and Validation Subcommittee
 - Support model integrations into commercial simulation tools

HVDC Model Development

Approach: Develop separate HVDC models the can better represent HVDC technologies
used by Siemens Energy, Hitachi Energy, and GE Vernova

HVDC Model #1 (VHVDC_A1)

- Collaboration with Siemens Energy
 - Siemens Energy provided a UDM and detailed control blocks for an HVDC model
 - Interconnection applications
 - Wind park applications
 - PNNL started developing an HVDC Model Specification
 - PNNL plan on developing HVDC model #1 (VHVDC A1):

Northwest PNNL-35194 **Model Specification of HVDC Transmission** Model (VHVDC A1) September 1, 2025 Names **Organizations** Wei·Du PNNL Quan-Nguyen **PNNL** Sheik·M·Mohiuddin **PNNL** Siemens Energy Richard·Hoese Andreas-Hanschick Siemens-Energy Tuan-Trinh Siemens-Energy Eugen Starschich Siemens-Energy Ara-Panosyan Siemens-Energy

Benchmark PNNL's PSCAD and PSSE models

Develop PSCAD model Benchmark PSCAD model and Siemen's PSSE model

Develop PSSE model

HVDC Model #1 (VHVDC_A1) (cont'd)

Model structure

- HVDC power flow model and setup in commercial tools
- Interfaces of HVDC converters at AC and DC side
- Control of Side-1 and Side-2 converters
 - Interconnection applications (both converters in grid-following mode)
 - Wind park applications (one converter in grid-forming mode and the other in grid-following mode)

AC-DC Power Flow Model

Figure: Power flow model of a 2-terminal bipole HVDC system.

- The power flow solution for initialization is obtained from the AC-DC power flow in commercial tools.
- Each HVDC converter connects to the AC grid via a two-winding transformer, with bipole poles modeled as separate links.
- The AC-DC power flow solution relies on the control modes of Side-1 and Side-2 converters. The following two options are allowed:
 - Option 1 (for interconnection applications): Side-1 converter controls DC voltage, and Side-2 converter controls AC active power with positive power set point.
 - Option 2 (for wind park applications): Side-1 converter controls AC active power with negative power set point, and Side-2 converter controls DC voltage.

Converter Interface with AC and DC Grids

Figure: Equivalent interface of a GFL converter with the AC grid.

Figure: Thevenin-equivalent representation and converted Norton-equivalent interface of a GFM converter with the AC grid

Figure: Equivalent interface of a GFL converter with the DC grid.

DC Current

$$I_{dc} = \frac{P_{dc}}{V_{dc}} = -\frac{P_{ac} + P_{loss}}{V_{dc}}.$$

Figure: Equivalent interface of a GFM converter with the DC grid.

DC Line Model

Figure: DC line model in an HVDC system.

- The DC transmission lines and cables are modelled as a standard DC line
- The equivalent capacitances C_1 and C_2 at Sides 1 and 2:

$$C_1 = C_2 = \frac{6 \times C_{SM}}{N_{SM}},$$

where C_{SM} is the capacitance of each submodule, while N_{SM} is the number of submodules per converter

Side-1 Main Converter Model

Figure: Side-1 converter in interconnection applications (active current command generation).

 $\overline{sT_{Vac1_f2}+1}$

Side-1 Main Converter Model (cont'd)

Figure: Side-1 converter in interconnection applications (reactive current command generation).

 $-\overline{db}_{Vac1_dyn}$

Figure: Side-1 controller current limiting control.

Side-1 Main Converter Model (cont'd)

Side 1- Circular Current Limiting Control

The circular limiting strategy is defined as follows:

$$I_{d1_cmd} + jI_{q1_cmd} \qquad I_{c1_cmd} < I_{c1_max} = \max(I_{d1_max}, I_{q1_max})$$

$$I_{d1_cmd} + jI_{q1_cmd} \qquad I_{c1_cmd} \ge I_{c1_max}$$

$$I_{d1_ref} + jI_{q1_ref}$$

$$k_1$$

Where:

$$\begin{split} I_{cl_cmd} \angle \theta_{cl_cmd} &= I_{dl_cmd} + jI_{ql_cmd} \\ k_l &= \frac{I_{cl_cmd}}{I_{cl_max}} \end{split}$$

The active- and reactive-current references I_{dl_ref} and I_{ql_ref} from the main control are used to synthesize the phasor reference current $I_{xl_ref}+jI_{yl_ref}$ to interface with the AC grid.

Side-1 Reactive Power Control (Outer Loop)

Side-1 reactive power command can be generated using one of the following objectives:

- Controlling reactive power
- Controlling AC voltage
- Controlling AC power factor

Figure: Side-1 reactive power command generation control in interconnection applications.

Side-1 Converter Model in Wind Park Applications

In wind park applications, Side-1 converter operates in GFM mode.

Figure: Main Converter controller of Side-1 in wind park applications.

In wind park applications, a chopper controller is used to protect the HVDC system form a fault at the AC side of Side-2 converter.

Figure: Chopper Controller.

Figure: Side-2 converter active current command generation controller.

 $\overline{T_{Vac \, 2_f 2} s+1}$

Side-2 Main Converter Model

 $-I_{q2_max}$

Figure: Side-2 converter reactive current command generation controller.

Side-2 Reactive Power Control (Outer Loop)

Side-2 reactive power command can be generated using one of the following objectives:

- Controlling reactive power
- Controlling AC voltage
- Controlling AC power factor

Figure: Side-1 reactive power command generation control in interconnection applications.