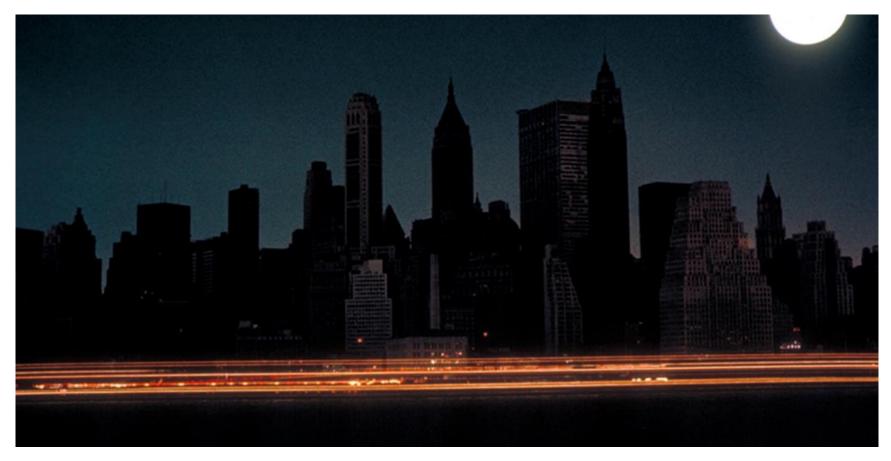
Black Start / System Restoration Studies using PSLF



Steven A. Barnes GE Energy Management Energy Consulting

imagination at work

Motivation for Simulation of Black Start Plans

imagination at work

NERC Standard: EOP-005-2

Against the backdrop of increasing regulatory scrutiny, electric utility companies are being required to verify the effectiveness of their black start restoration plans through testing, simulations or a combination of both.

EOP-005-2: System Restoration from Blackstart Resources Enforcement Date 07/01/2013

- R6. Each Transmission Operator shall verify through analysis of actual events, steady state and dynamic simulations, or testing that its restoration plan accomplishes its intended function. This shall be completed every five years at a minimum Such analysis, simulations or testing shall verify:
 - R6.1. The capability of Blackstart Resources to meet the Real and Reactive Power requirements of the Cranking Paths and the dynamic capability to supply initial Loads.
 - R6.2. The location and magnitude of Loads required to control voltages and frequency within acceptable operating limits.
 - R6.3. The capability of generating resources required to control voltages and frequency within acceptable operating limits.

What can the Transmission Operator Do?

- 1. Test the black start restoration plan.
- 2. Simulate the black start restoration plan.

Given existing transmission and generating unit constraints, testing may not be practical or economical.

Simulation of the restoration plan may be the only practical recourse.

So What is a Black Start Plan?

- A black start restoration plan provides a logical sequence of events that transmission operators need to take for the safe isolation and restart of the TO's operating area following the occurrence of a massive power outage that includes the complete loss of generation, load and the transmission network serving the system load.
- A black start plan typically involves the following steps:
 - 1. Selection of generating units with self-starting capability.
 - Small combustion turbines or hydro turbines.
 - 2. Energizing the cranking path between the black start unit and the auxiliary motor load in the power plant to be black started.
 - Overhead transmission and/or underground cables.
 - Step-up and auxiliary transformers.
 - 3. Starting up of station service loads.
 - Induction motor load ranging from a few hundred to several thousand HP.
 - Plant lighting, small motor load, fire systems, electronics.
 - 4. Once the larger units are online (synchronized), the full restoration of the system load occurs.
 - Sequential restoration of transmission paths, distribution-fed substations, system load.
 - Shunt compensation?

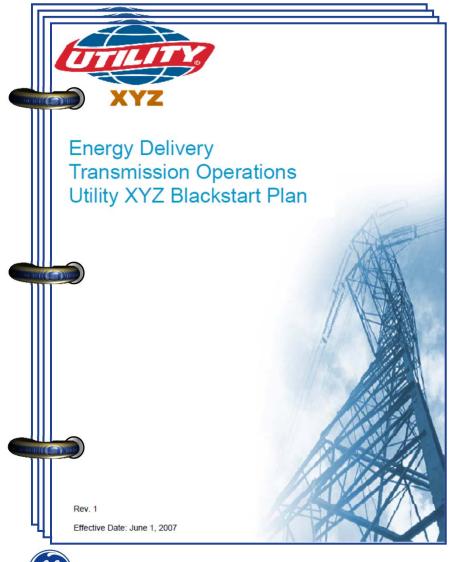
Traditional Black Start Studies

- A traditional black start study of the past would typically only look at the procedure for a small combustion turbine in supplying power to a large steam turbine's station auxiliary load and its ability to start the largest motor.
- The typical black starting model includes the following:
 - The black start (combustion turbine) unit.
 - Generator electrical and mechanical model
 - Excitation model
 - Turbine-governor model
 - The black start (combustion turbine) unit's generator step-up transformer (GSU).
 - The cranking path (overhead transmission or underground cables).
 - The black started (large steam turbine) unit's generator step-up transformer (GSU).
 - The black started (large steam turbine) unit's auxiliary transformer(s).
 - The black started (large steam turbine) unit's auxiliary motor load, typically the largest motor.
 - Forced Draft (FD) or Induced Draft (ID) Fans
 - Boiler Feed-Water Pumps

Today's Black Start Studies

- Black start studies of today need to look beyond the typical motor starting study done in the past, but also verify that the plan to put the transmission system back together is feasible from a steady-state, dynamic and possibly transient perspective.
- The steady-state analysis of this isolated power system can include:
 - Voltage control and steady-state overvoltage (Ferranti effect) analysis.
 - Capability of the black starting units ability to absorb VARs produced by the transmission system connecting the plants.
 - Step-by-step simulation of the black start plan being tested to ensure its feasibility and compliance with required operational limits.
 - Verification of the robustness of the tested black start plan to ensure its ability to compensate for the unavailability
 of key components to be used in the plan.
 - Generation and load matching.
- The dynamic analysis of this isolated power system can include:
 - Load-frequency and voltage control.
 - Load rejection voltage and frequency dynamics.
 - Self-excitation assessment.
 - Large induction motor starting.
 - Motor starting sequence assessment.
 - System stability.
- The transient analysis of this isolated power system can include:
 - Transmission line switching (transient overvoltage) analysis.

Preparation and Research

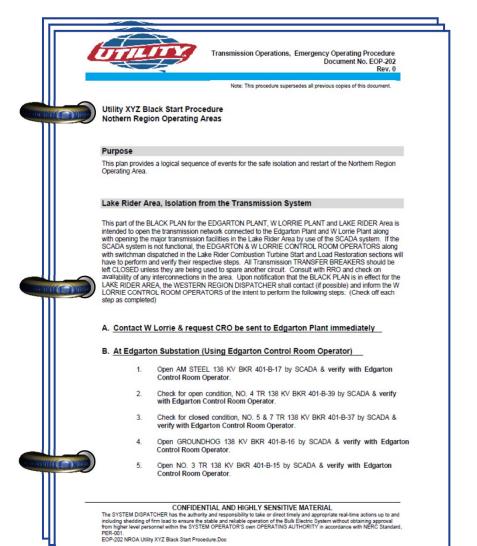


imagination at work

What's Typically Needed

- Detailed Black Start Plan
- Standard Power Flow & Dynamics Databases
- Reliability Criteria
- Transmission System Breaker Diagrams
- Black Start Plant and Power Plant One-Line Diagrams
- Power Plant Auxiliary Load Information
- Detailed List of Transmission Fed Distribution Substations
- An Automated Software Program Tool
- Good Engineering Judgment and Knowledge!!!!

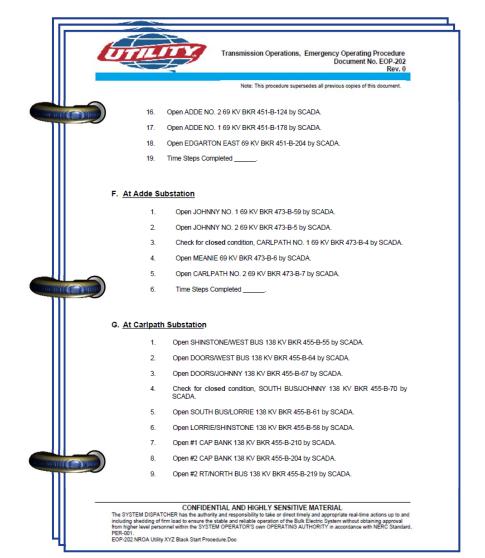
The Transmission Owner's detailed black start plan should provide the following information:


<page-header><image/><text><text><image/><image/></text></text></page-header>			
Distance of the second secon		T	
Distance of the second secon	17	FILL	Transmission Operations Emergency Operating Procedure
<text><image/></text>			
Disciplication Disciplication Unit Name Bayside #1 Peaking Unit Icoation Springfield, AD Frederick County String Operator Utility XYZ Operator Utility XYZ Operator Utility XYZ Operator Utility XYZ Operator Towner Upit Name 17 MW Type of Unit CT Previous Date of Test Unct Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance, AD Disobediance County City/County/State Utility XYZ Operator Battery- Diesel Image: Stryder #1 Peaking Unit CT Previous Date of Test 9-21-05 Starting Method Battery- Diesel Ima			
Disciplication Disciplication Unit Name Bayside #1 Peaking Unit Icoation Springfield, AD Frederick County String Operator Utility XYZ Operator Utility XYZ Operator Utility XYZ Operator Utility XYZ Operator Towner Upit Name 17 MW Type of Unit CT Previous Date of Test Unct Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance, AD Disobediance County City/County/State Utility XYZ Operator Battery- Diesel Image: Stryder #1 Peaking Unit CT Previous Date of Test 9-21-05 Starting Method Battery- Diesel Ima			
Unit Name Bayside #1 Peaking Unit Location Springfield, AD Frederick County Itility XYZ Operator Utility XYZ Operator Utility XYZ Capacity in MW 17 MW Type of Unit CT Previous Date of Itel Test Updated Test Date Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance, AD Disobediance County City/County/State Unit Name Operator Utility XYZ Operator Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit<			Note: This procedure supersedes all previous copies of this document.
Unit Name Bayside #1 Peaking Unit Location Springfield, AD Frederick County Itility XYZ Operator Utility XYZ Operator Utility XYZ Capacity in MW 17 MW Type of Unit CT Previous Date of Itel Test Updated Test Date Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance, AD Disobediance County City/County/State Unit Name Operator Utility XYZ Operator Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit<	-		
Unit Name Bayside #1 Peaking Unit Location Springfield, AD Frederick County Itility XYZ Operator Utility XYZ Operator Utility XYZ Capacity in MW 17 MW Type of Unit CT Previous Date of Itel Test Updated Test Date Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance, AD Disobediance County City/County/State Unit Name Operator Utility XYZ Operator Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit<	BI	ack Start Units	
Location Springfield, AD Frederick County City/County/State Operator Utility XYZ Operator Utility XYZ Operator Capacity in MW 17 MW Type of Unit CT Previous Date of Test Updated Test Date I1-23-05 Updated Test Date 11-23-05 Starting Method Battery- Diesel Minit Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance County City/County/State Owner Utility XYZ Operator Utility XYZ Operator Operator Utility XYZ Operator Type of Unit CT Previous Date of Test Updated Test Date 9-21-05 Starting Method Starting Method Battery- Diesel Starting Method Unit Name Stryder #1 Peaking Unit Ct Location Stryder #1 Peaking Unit Ct Location Stryder, AD Ocean County City/County/State Independent Power Producer ABC Operator Owner Independent Power Producer ABC Capacity in MW <		ick Start Offits	
Location Springfield, AD Frederick County City/County/State Utility XYZ Operator Utility XYZ Capacity in MW 17 MW Type of Unit CT Previous Date of Test Updated Test Date 11:23:05 Starting Method Battery-Diesel Imit Name Poorland #1 Peaking Unit Location Disobediance, AD Owner Utility XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9:21:05 Updated Test Date 9:21:05 Starting Method Battery-Diesel Mit Name Stryder #1 Peaking Unit Location Stryder, AD Ocean County City/County/State Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW	Uni	it Name	Bayside #1 Peaking Unit
Owner Utility XYZ Operator Utility XYZ Capacity in MW 17 MW Type of Unit CT Previous Date of Itest Test Updated Test Date Updated Test Date 11.23.05 Starting Method Battery- Diesel Image: Disobediance, AD Disobediance County City/County/State Owner Owner Utility XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21.05 Starting Method Battery- Diesel Image: Disobediance County City/County/State Updated Test Date 9-21.05 Starting Method Battery- Diesel Ity/County/State 9-21.05 Starting Method Battery- Diesel Ity/County/State 0/0 Owner Independent Power Producer ABC Operator Independent Power Producer ABC Operator Cr Previous Date of CT	Loc	ation	
Operator Utility XYZ Capacity in MW 17 MW Type of Unit CT Previous Date of Test Updated Test Date 11-23-05 Starting Method Battery- Diesel Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Owner Utility XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery- Diesel Viliti Name Stryder #1 Peaking Unit Location CT Previous Date of Test Updated Test Date Updated Test Date 9-21-05 Starting Method Battery- Diesel Viri/County/State Owner Owner Independent Power Producer ABC Operator Independent Power Producer ABC			1.1.11/ Add #
Capacity in MW 17 MW Type of Unit CT Previous Date of 1 Test Updated Test Date Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance, AD Disobediance County City/County/State Owner Owner Utility XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test Updated Test Date Updated Test Date 9-21-05 Starting Method Battery- Diesel Mit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Cowner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of CT Previous Date of Test Updated Test Date 9-22-05			
Type of Unit CT Previous Date of Test Updated Test Date 11-23-05 Starting Method Battery- Diesel Image: Starting Method Battery- Diesel Image: Starting Method Battery- Diesel Image: Starting Method Disobediance, AD Disobediance, AD Disobediance County City/County/State Owner Owner Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery- Diesel Imit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder, AD City/County/State Owner Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05	Car	erator pacity in MW	
Previous Date of Test 11-23-05 Starting Method Battery- Diesel Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Owner Unitity XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery- Diesel	Typ	be of Unit	
Updated Test Date 11.23-05 Starting Method Battery- Diesel Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Owner Utility XYZ Operator Operator Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Coperator Independent Power Producer ABC Operator Ind	Pre	vious Date of	
Starting Method Battery- Diesel Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Owner Ulity XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21.05 Starting Method Battery- Diesel Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Coperator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of CT Previous Date of Test Updated Test Date 9-22.05			44.00.05
Unit Name Poorland #1 Peaking Unit Location Disobediance, AD Disobediance County City/County/State Operator Utility XYZ Operator Utility XYZ Capacity in MW Type of Unit CT Previous Date of Test Updated Test Date 9-21-05 Starting Method Battery- Diesel Unit Name Stryder #1 Peaking Unit Location Ctr//County/State Owner Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Independent			
Location Disobediance, AD Disobediance County City/County/State Operator Utility XYZ Operator Utility XYZ Operator Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery-Diesel Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Operator Operator Independent Power Producer ABC Operator Type of Unit CT Previous Date of Test Updated Test Date 9-22-05	Sta	rung method	Battery- Diesei
Location Disobediance, AD Disobediance County City/County/State Operator Utility XYZ Operator Utility XYZ Operator Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery-Diesel Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Operator Operator Independent Power Producer ABC Operator Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			
Location Disobediance, AD Disobediance County City/County/State Operator Utility XYZ Operator Utility XYZ Operator Capacity in MW 14 MW Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery-Diesel Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Operator Independent Power Producer ABC Operator Independent Power Producer ABC Operator Operator Operator Independent Power Producer ABC Operator Type of Unit CT Previous Date of Test Updated Test Date 9-22-05	Usi	t Nama	Dearland #4 Deaking Unit
City/County/State Utility XYZ Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test Updated Test Date Updated Test Date 9-21-05 Starting Method Battery- Diesel			Disobediance, AD Disobediance County
Operator Utility XYZ Capacity in MW 14 MW Type of Unit CT Previous Date of Test Updated Test Date Jupitated Test Date 9-21-05 Starting Method Battery- Diesel Unit Name Stryder #1 Peaking Unit Location Stryder, AD City/County/State Owner Operator Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			bioboularios, Ab bioboularios county
Capacity in MW 14 MW Type of Unit CT Previous Date of Test			
Type of Unit CT Previous Date of Test 9-21-05 Starting Method Battery- Diesel Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05	Op	erator	
Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit City/County/State Ocean County Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test 9-22-05		pacity in MW	
Updated Test Date 9-21-05 Starting Method Battery- Diesel Unit Name Stryder #1 Peaking Unit Location Stryder #1 Peaking Unit City/County/State Stryder AD Ocean County Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of - Test 9-22-05	Pre	vious Date of Test	
Unit Name Stryder #1 Peaking Unit Location Stryder, AD Ocean County City/County/State Independent Power Producer ABC Operator Owner Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Previous Date Updated Test Date 9-22-05 9-22-05 Previous Date			9-21-05
Location Stryder, AD Ocean County City/County/State Independent Power Producer ABC Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05	Sta	rting Method	Battery- Diesel
Location Stryder, AD Ocean County City/County/State Independent Power Producer ABC Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			
Location Stryder, AD Ocean County City/County/State Independent Power Producer ABC Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			
City/County/State Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			
Owner Independent Power Producer ABC Operator Independent Power Producer ABC Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			Suyder, AD Ocean County
Capacity in MW 18 MW Type of Unit CT Previous Date of Test Updated Test Date 9-22-05			Independent Power Producer ABC
Type of Unit CT Previous Date of Test Updated Test Date 9-22-05	Op	erator	Independent Power Producer ABC
Previous Date of Test Updated Test Date 9-22-05			
Test Updated Test Date 9-22-05			
Updated Test Date 9-22-05			
	Up	dated Test Date	
			Battery- Diesel
	,		
-			
			CONFIDENTIAL AND HIGHLY SENSITIVE MATERIAL
CONFIDENTIAL AND HIGHLY SENSITIVE MATERIAL			
CONFIDENTIAL AND HIGHLY SENSITIVE MATERIAL The SYSTEM DISPATCHER has the authority and reasonsibility to take or direct timely and appropriate real-time actions up to and	The	SYSTEM DISPATCHER	has the authority and responsibility to take or direct timely and appropriate real-time actions up to and to ensure the stable and reliable operation of the Bulk Electric System without obtaining approval
CONFIDENTIAL AND HIGHLY SENSITIVE MATERIAL The SYSTEM DISPATCHER has the authority and responsibility to take or direct timely and appropriat real-time actions up to and including shedding of firm load to ensure the stable and reliable operation of the Buk Electric System without obtaining approval from higher level personnel within the SYSTEM OFERATIORS JOIN OPERATING AUTHORY in accordance with NERC Standard	inclu from	iding shedding of firm loai i higher level personnel w	d to ensure the stable and reliable operation of the Bulk Electric System without obtaining approval
CONFIDENTIAL AND HIGHLY SENSITIVE MATERIAL The SYSTEM DISPATCHER has the authority and responsibility to take or direct timely and appropriate real-time actions up to and including shedding of frm load to ensure the stable and reliable operation of the bluk Electric System without obtaining approval	inclu from PER	iding shedding of firm load i higher level personnel wi I-001.	d to ensure the stable and reliable operation of the Bulk Electric System without obtaining approval thin the SYSTEM OPERATOR'S own OPERATING AUTHORITY in accordance with NERC Standard,

imagination at work

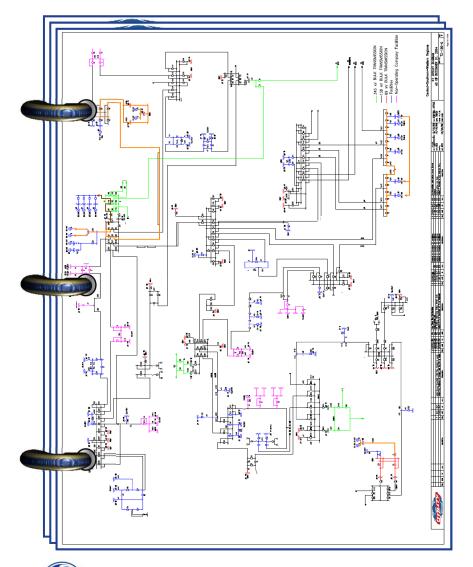
The Transmission Owner's detailed black start plan should provide the following information:

Selection of generating units with self-starting capability (black start units).



The Transmission Owner's detailed black start plan should provide the following information:

- Selection of generating units with self-starting capability (black start units).
- It is essential to establish the necessary cranking paths for plant restoration at appropriate Black Start plants.


imagination at work

The Transmission Owner's detailed black start plan should provide the following information:

- Selection of generating units with self-starting capability (black start units).
- It is essential to establish the necessary cranking paths for plant restoration at appropriate Black Start plants.
- The plan should provide a logical sequence of events for the safe isolation and restart of the Transmission Owner's Operating Area electrical system following a complete shutdown.

magination at work

The Transmission Owner's detailed black start plan should provide the following information:

- Selection of generating units with self-starting capability (black start units).
- It is essential to establish the necessary cranking paths for plant restoration at appropriate Black Start plants.
- The plan should provide a logical sequence of events for the safe isolation and restart of the Transmission Owner's Operating Area electrical system following a complete shutdown.
- The plan will typically layout a procedure which calls for setting specific breaker configurations at each transmission and transmission fed distribution substation, in order to minimize issues with battery loss of life which can prevent breaker operation during restart.

Black Start WebEx

14

8/6/2014

Standard Power Flow & Dynamics Databases

- Determine the power flow year and forecasted load to use for the simulation runs.
 - Summer Peak Forecasted Load
 - Light Load
- Obtain the corresponding dynamics database for the power flow database.
- Note that these databases will need to be modified (in some cases significantly), but will be an excellent starting point based on the full transmission model and standard dynamic models.

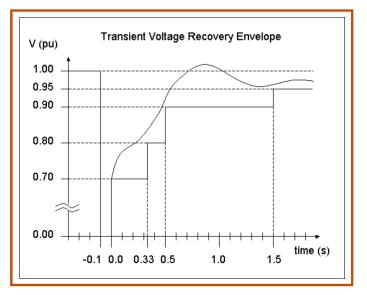
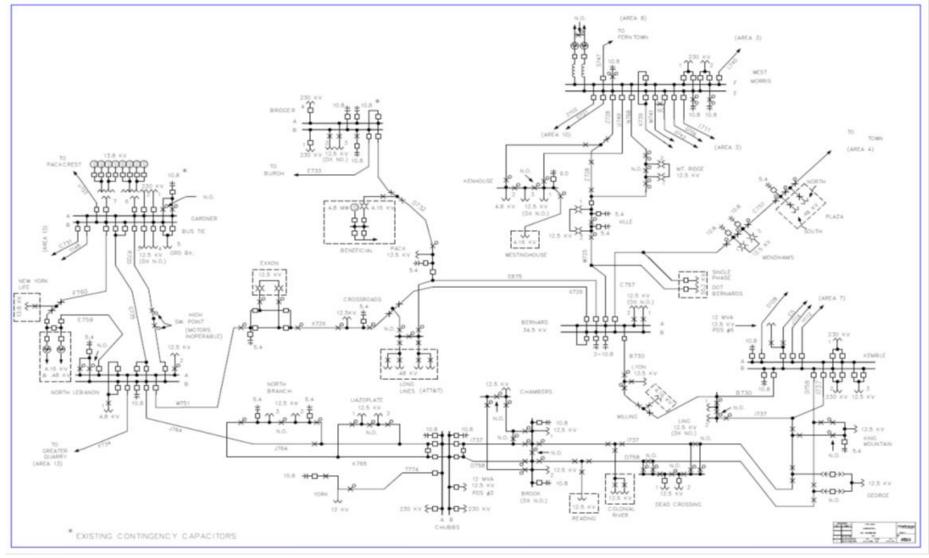
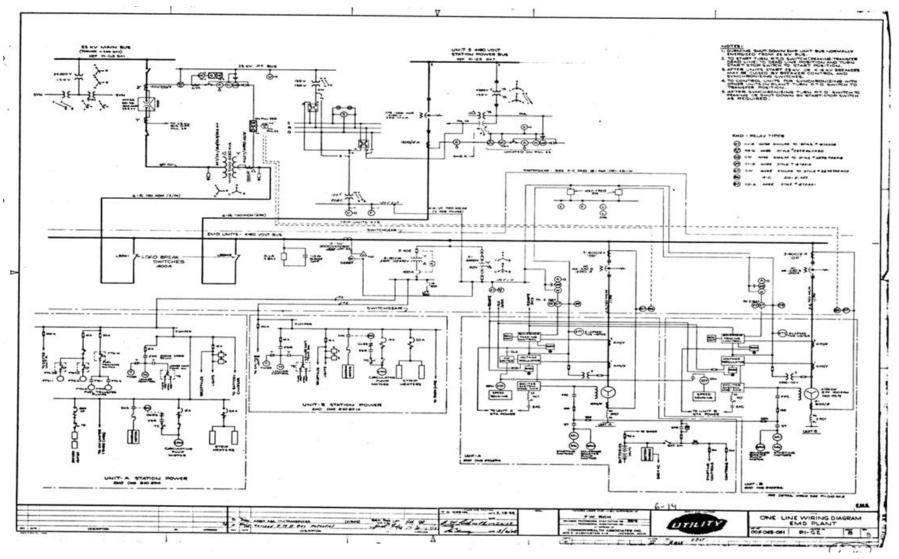

Reliability Criteria

Table 1 - Voltage Limits	500kV	230/ 345kV	138/	115kV	69/46/34.5 kV	25/23 kV
Limit	ALL	ALL	PJM BES	PJM Non-BES	ALL	ALL
Maximum	1.10	1.05	1.05	1.05	1.05	1.075
Normal Minimum	1.00	0.95	0.95	0.95	0.92	0.92
Emergency Minimum	0.97	0.92	0.92	0.90	0.90	0.90
Maximum Deviation *						
(Pre to Post Contingency and On to Off Peak)	0.05	0.08	0.10	0.10	0.10	0.10

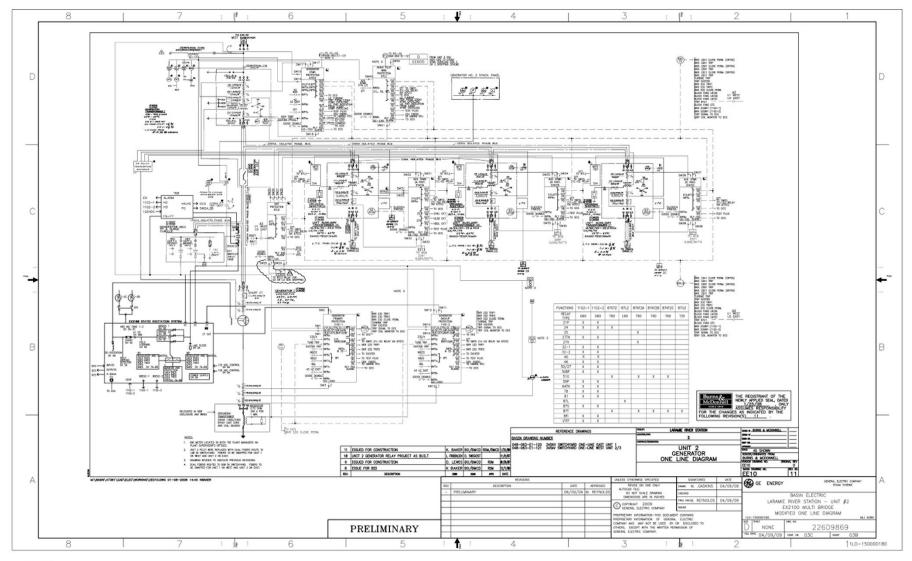
Thermal Requirements


- For normal system conditions with no line, transformer, or generation unit out of service all transmission facilities should not exceed their normal (continuous) rating.
- For a contingency loss of any one facility (line, transformer, or generator), the system should not exceed its emergency (4 hour) rating.
- For a contingency loss of any one facility (line, transformer, or generator) and the discrete outage of one generator, the system should not exceed its emergency (4 hour) rating.

Bus Name	Frequency Limit Low	Frequency Limit High
500 kV	59.67 Hz	60.33 Hz
230 kV	59.67 Hz	60.33 Hz



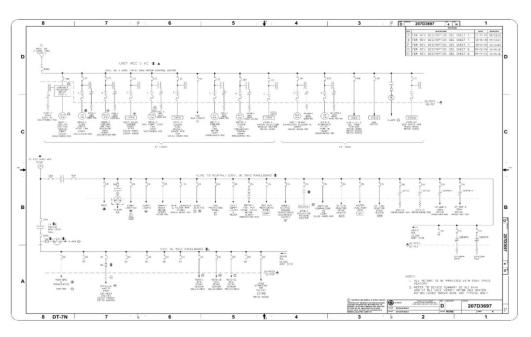
Transmission System Breaker Diagrams

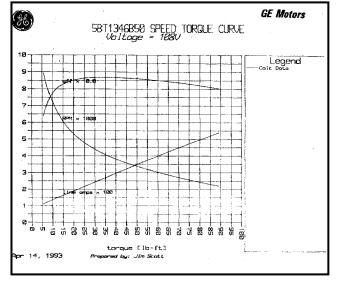


Black Start Unit One-Line Diagram

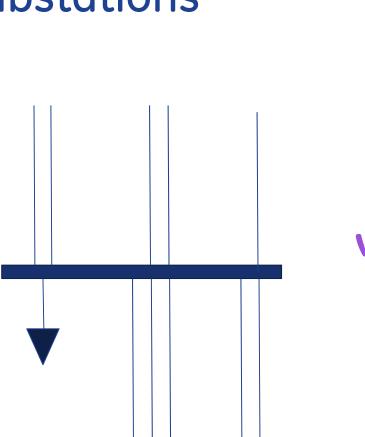
imagination at work

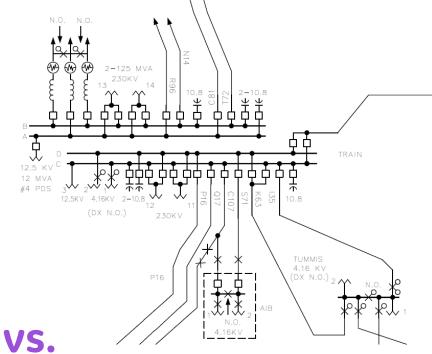
Power Plant One-Line Diagram




Power Plant Auxiliaries

Unit No.1 Auxiliary Load	HP	MW
Ash Disposal Pump No. 1	200	0.1492
Boiler Feed Pump No. 1A	1500	1.119
Boiler Feed Pump No. 1B	1500	1.119
Boiler Feed Pump No. 1C	1500	1.119
Condensate Pump No. 1A	300	0.2238
Condensate Pump No. 1B	300	0.2238
Circ. Water Pump No. 1B	400	0.2984
Circ. Water Pump No. 1A	400	0.2984
SOOT Blower Air Comp. No.1	300	0.2238
Forced Draft Blower No.1B	2000	1.492
Forced Draft Blower No.1A	2000	1.492
Coal Crusher #1 FWD	600	0.4476
Coal Crusher #2 FWD	600	0.4476
AQC Ash Water Supply Pump A	250	0.1865
F	11850	8.84


Unit No.2 Auxiliary Load	HP	MW
Force Draft Blower #2B	2000	1.492
Force Draft Blower #2A	2000	1.492
SOOT Blower Air Comp. No.2	500	0.373
Circ. Water Pump No. 2A	400	0.2984
Circ. Water Pump No. 2B	400	0.2984
Condensate Pump No. 2A	300	0.2238
Condensate Pump No. 2B	300	0.2238
Boiler Feed Pump No. 2A	1500	1.119
Boiler Feed Pump No. 2B	1500	1.119
Boiler Feed Pump No. 2C	1500	1.119
Boiler Cooling Fan No. 1	250	0.1865
Ash Disposal Pump No. 2	200	0.1492
AQC Ash Water Supply Pump B	250	0.1865
	11100	8.28



Transmission Fed Distribution Substations

An Automated Software Program Tool

PSLF PRO			-														
ile Edit Lo	oadFlow	ShortCirc	uit Dynar	nics GMI) Other Vi	ew Help											
getf	savf	epcl	sepc	edit	dchk	tabr	solv	scan	olgr	exim	rept	SCSC	tic			GE Energy	
rdyd	init	run	plot	wdyd	dsst	dscn	edds	edmd	edic	eder	misc	uedt	parm				
Running Release General PSLF - 1 This in Positive Symmetry Positive	PSLF J Date: Electr V18.1_0 stallat e Seque ical Co e Seque	AVA init Septembe ic Inter 2 80000 ion is 1 nce Load mponent nce Dyna	ializati r 12, 20 national Bus Vers icensed Flow Short Ci mic Simu	on file 13 , Inc. ion for: /* la /*	\javaini.p javaini.p	LOAD RE	STORATION	I STUDY -	EPCL BASE		OOLS				-/	SSTOOLs Steady-State And Cross Tabulation of the and Voltage Analysis	he Thermal
Geo-Magi	netic D	isturban	ce Calcu	la /****				********	********				*****	****	*******/		
Started	up at.	Fri Ju	1 25 03:	32 /****	*********		*******		********		********	********	*******	****		User and Applications Mo	anual
Dourocu	up uo.	111 04	1 20 00.	14	AILBOX DAT		DAV MEN	MATLROX	ADA UPPP						*/	oser and Applications in	anadi
				1+											-/		
				1*				contdescr contname[*/		
Started at: D	D:\Projec	ts\PSLF Tr	aining\Wel		mailbox[0].numbe	r[1] = :	eturn val	ue from p	re_ and	post_epcl	to indic	ate failure		*/	Prepared by:	
Input:				1.				does not	include t	ripped g	eneration	cuased b	y an island	1)	+1	Steven A. Barnes	
mput				1*	mailbox[0].numbe	r[15] = t	otal load	tripped	for a co	ntingency				*/	Robert D'Aquila	
				1	********			*******	*******					****	/	Brian Thomas	
																Brian monius	
					MAXOUTA			/* MAXIMU							*/		
				defin	e MAXDRAW e MAXBUS	s 600		/* MAXIMU /* MAXIMU				PSLF VEP	SION DIMENS	ION)	*/	Revised by:	
				defin	e MAXSECD	D 600	00	/* MAXIMU	M SECDD	(MAR	E SAME AS	PSLF VEP	SION DIMENS	ION)	•/	Brian Thomas September 27th, 2011	
				defin defin				/* MAXIMU /* MAXIMU					SION DIMENS	ION)	-/	September 27 th , 2011	
				defin	· MAXSVD	100	00	/* MAXIMU	M SVDS	TO B	E MONITOR	ED			*/		
					 MAXITFA MAXAREA 			/* MAXIMU /* MAXIMU			E MONITOR E MONITOR				*/		1010 . 1200
					e MAXZONE			/* MAXIMU			E MONITOR				*/		Version 5.4
				/												General Electric International, Inc.	
					USTOM PATH										•/	1 River Road	(ye
				/****											/	Schenectady, NY 12345 USA	(00)
					pathsav[1			/ PATH T							*/	000	
					*pathin[1] *pathout[1			/* PATH T /* PATH T			8				*/		
				dim	*epclfile[1][80]		/* STORES	NAME OF	EPCL FIL	E RUN AS	PART OF T	HE CONTINGE	NCY	+/		
					*pre_epcl[*post epcl			/* EPCL T							:/		
					*lstfile[1			, LPUD I	- non art	LA LACH	SoutingE						
				dim	*basecase [11(80)		/* BASECA	SE NAME W	ITH THE	*. say FXT	ENSION, N	O PATH		•/		
				dim	*bcase[1][*casename[132]		/* FULL B	ASECASE N	AME WITH	EXTENSIO	N AND PAT			-/		

Good Engineering Judgment and Knowledge!!!!

- The engineer performing this study needs to have a good understanding of numerous power system analysis techniques, simulation models, operating practices for both generation and transmission.
 - Power System Analysis Techniques:
 - Steady-State Analysis
 - Dynamic Stability Analysis
 - Transient Analysis
 - Simulation Modeling:
 - Power Plant Models (Generator, Excitation, Governor, Prime Mover, etc.)
 - Load & Motor Modeling (Power Plant Auxiliaries, Residential, Commercial, Industrial, Composite)
 - Transmission System Models (MSC, SVC, STATCOM, etc.)
 - Electromagnetic transient modeling
 - Operating Practices:
 - Planning Engineer needs to think like a Generator Operator.
 - Planning Engineer needs to think like a Transmission Operator.
 - Planning Engineer needs to be able to think "What Could Go Wrong?"

Study Approach

imagination at work

Study Objectives

The primary objectives of this type of study are:

- Evaluate the TO's Black Start Plan for it's Operating Area(s).
- Asses the likelihood that the black-start units will perform as expected, and the system can be restored per the existing black start plan.
- Identify and evaluate any limiting issues that arise during the black start restoration procedure.
- Provide a methodology to allow the TO to perform evaluation of black start power flow and dynamic stability studies in the future.

Steady-State Database Modifications

- Isolation of the System
- Distribution of System Loads
- Modeling the Black Start Capable Power Plants
- Modeling of Black Started Power Plants

Isolation of the System

- 1. All equipment is turned off.
 { gens[].st = load[].st = secdd[].st = tran[].st = shunt[].st = svd[].st = dcl[].st = dcc[].st = 0 }
- 2. All scheduled bus voltages are set to 1.00 per unit.
 { busd[].vsched = 1.00 }
- 3. All bus voltages are set to 1.00 per unit.
 { volt[].vm = 1.00 }
- 4. All bus angles are set to 0.00 degrees.
 { volt[].va = 0.00 }
- 5. All generator buses are set to be swing machines.
 { busd[].type = 0 }
- 6. All generating units are set to regulate their own terminal voltage.
 { gens[].ireg = gens[].ibgen }
- 7. All generating units are set to zero active power output.
 { gens[].pgen = 0 }
- 8. All generating units are set to zero reactive power output.
 { gens[].qgen = 0 }

Distribution of System Loads

For traditional transmission planning studies, loads are lumped and modeled directly connected to the transmission and sub-transmission systems. For a black start study, the lumped loads needed to be divided up in order to represent the individual circuits fed off of the grid. This would allow us to connect each individual load during the load restoration process.

Typically a black start plan lays out where each individual feeder circuit is connected to the grid and an approximation of the total load fed on those circuits. Using the summer peak baseline case, these load values were used in place of the values stated in the black start plan, unless specified differently by the TO. The load power factor was maintained for each individual circuit to account for the reactive load.

For each year that the black start plan is studied, the new load growth needs to be taken into consideration and distribute the total load accordingly.

Load Distribution

Original	2013 Summ	er Peak L	oad:			Ir	ndividual Load R	epresentation:
BUS	ID	PLOAD	QLOAD PF	BUS	ID ST	BLACK START PLAN	2013 SP LOAD	Represents:
3325 KINLEY	23 C	0.530	0.200 0.936	3325 KINLEY	23 C1 1	0.500	0.530	Restores Kinley Substation
3325 KINLEY	23 0	1.430	0.390 0.965	3325 KINLEY	23 01 1	1.500	1.430	Restores Kinley Substation
3326 WEASCO	23 C	2.280	0.940 0.925	3326 WEASCO	23 C1 1	2.000	2.280	Restores Interstate Processor & Indalex Customer Substations
3330 DIRT	23 0	7.070	1.920 0.965	3330 DIRT	23 01 1	1.000	1.010	D-86 4.16 kV Circuit @ Wirt 23
				3330 DIRT	23 02 1	2.000	2.020	D-87 4.16 kV Circuit @ Wirt 23
				3330 DIRT	23 03 1	2.000	2.020	D-85 4.16 kV Circuit @ Wirt 23
2005 100000			0.550.0.065	3330 DIRT	23 04 1	2.000	2.020	D-260 4.16 kV Circuit @ Wirt 23
3225 MOUNT 3226 WA.PUMP+	23 O 23 C	2.090	0.570 0.965	3225 MOUNT 3226 WA.PUMP+	23 01 1 23 C1 1	2.000	2.090	Restores Mount Substation
								Restores Warrenton City Sewage Pumping Substation
3252 WAR.SEW+	23 C 23 O	0.830	0.120 0.961	3252 WAR.SEW+	23 C1 1 23 01 1	1.000	0.830 2.340	Restores Warrenton City Sewage Pumping Substation East 23.00 kV Circuit
3166 EAST 3165 CITY	23.0	4.490	1.220 0.965	3166 EAST 3165 CITY	23 01 1	2.000	4.490	City 23.00 kV Circuit
3179 ROCKY	69 0	8.970	2.440 0.965	3179 ROCKY	69 01 1	2.000	2.243	Overlook 4.16 kV Circuit @ Rockyhill 69
SI/9 ROCKI	090	8.970	2.440 0.905	3179 ROCKI 3179 ROCKY	69 02 1	3.000	3.364	Simpson 4.16 kV Circuit @ Rockyhill 69
				3179 ROCKI 3179 ROCKY	69 03 1	3.000	3.364	Chestnut 4.16 kV Circuit @ Rockyhill 69
3178 SOUTHWES	69 O	17.100	4.650 0.965	3179 ROCKI 3178 SOUTHWES	69 01 1	2.000	2.012	Freedom 4.16 kV Circuit @ Southwest 69
5170 50011WE5	050	17.100	4.050 0.505	3178 SOUTHWES	69 02 1	2.000	2.012	Liberty 4.16 kV Circuit @ Southwest 69
				3178 SOUTHWES	69 03 1	5.000	5.029	Lake Park 12.47 kV Circuit @ Southwest 69
				3178 SOUTHWES	69 04 0	8.000	8.047	Plaza 12.47 kV Circuit @ Southwest 69
1861 EAGLE	138 0	32.800	8.910 0.965		138 01 1	3.000	3.075	W-176 12.47 kV Circuit @ SouthWest 69
2001 00000	100 0	52.000	2.910 0.905	1861 EAGLE	138.02 0	7.000	7.175	W-177 12.47 kV Circuit @ Eagle 138
				1861 EAGLE	138 03 0	8.000	8.200	W-178 12.47 kV Circuit @ Eagle 138
				1861 EAGLE	138 04 0	8.000	8.200	W-179 12.47 kV Circuit @ Eagle 138
				1861 EAGLE	138 05 0	6.000	6.150	W-180 12.47 kV Circuit @ Eagle 138
3349 RIVER	23 0	5.430	1.510 0.963	3349 RIVER	23 01 1	3.000	2.715	T-390 22.86 kV Circuit @ River 23
				3349 RIVER	23 02 1	3.000	2.715	T-391 22.86 kV Circuit @ River 23
				3349 RIVER	23 03 0	13.000	0.000	T-380 22.86 kV Circuit @ River 23
1391 BORDER	23 0	2.860	0.780 0.965	1391 BORDER	23 01 1	3.000	2.860	D-45 4.16 kV Circuit @ Border 23
1390 BORDER	138 O	37.190	10.110 0.965	1390 BORDER	138 01 1	6.000	6.031	W-48 12.47 kV Circuit @ Border 138
				1390 BORDER	138 02 0	8.000	8.041	W-44 12.47 kV Circuit @ Border 138
				1390 BORDER	138 03 0	8.000	8.041	W-46 12.47 kV Circuit @ Border 138
				1390 BORDER	138 04 0	8.000	8.041	W-49 12.47 kV Circuit @ Border 138
				1390 BORDER	138 05 0	7.000	7.036	W-50 12.47 kV Circuit @ Border 138
1397 BRIDGE	138 O	30.190	8.210 0.965	1397 BRIDGE	138 01 1	3.000	2.922	Oakdale 12.47 kV Circuit @ Bridge 138
				1397 BRIDGE	138 02 0	6.000	5.843	Comstock 12.47 kV Circuit @ Bridge 138
				1397 BRIDGE	138 03 0	8.000	7.791	Reo 12.47 kV Circuit @ Bridge 138
				1397 BRIDGE	138 04 0	4.000	3.895	Althea 12.47 kV Circuit @ Bridge 138
				1397 BRIDGE	138 05 0	5.000	4.869	Woodside 12.47 kV Circuit @ Bridge 138
				1397 BRIDGE	138 06 0	5.000	4.869	Jamestown 12.47 kV Circuit @ Bridge 138
3217 ST.JOES	23 C	0.610	-0.030 0.999	3217 ST.JOES	23 C1 1	2.000	1.000	Restores St. Joseph Hospital Substation
3383 CHURCH	69 O	22.550	6.130 0.965	3383 CHURCH	69 01 1	4.000	3.469	D-228 8.32 kV Circuit @ Church 69
				3383 CHURCH	69 02 1	5.000	4.337	D-226 8.32 kV Circuit @ Church 69
				3383 CHURCH	69 03 1	5.000	4.337	D-227 8.32 kV Circuit @ Church 69
				3383 CHURCH	69 04 1	6.000	5.204	D-229 8.32 kV Circuit @ Church 69
				3383 CHURCH	69 05 0	6.000	5.204	D-225 8.32 kV Circuit @ Church 69
3273 WINDY	69 O	6.840	1.860 0.965	3273 WINDY	69 01 1	4.000	3.909	Grove 12.47 kV Circuit @ Windy 69
0.061 #**	<i>co o</i>	0.007		3273 WINDY	69 02 0	3.000	2.931	Jewel 12.47 kV Circuit @ Windy 69
3264 GARRETTS	69 O	8.080	2.200 0.965	3264 GARRETTS	69 01 1	2.000	2.309	825-A 12.47 kV Circuit @ Garretts 69
1561 035	100 0	06 406	7 000 0 0	3264 GARRETTS	69 02 1	5.000	5.771	825-E 12.47 kV Circuit @ Garretts 69
1561 GARDEN	138 O	26.480	7.200 0.965	1561 GARDEN 1561 GARDEN	138 01 1 138 02 1	6.000 5.000	6.355 5.296	Candlelight 12.47 kV Load @ Garden 138 Avalon 12.47 kV Load @ Garden 138
				1561 GARDEN 1561 GARDEN	138 02 1 138 03 1	5.000	5.296 6.355	Avalon 12.47 kV Load @ Garden 138 Normar 12.47 kV Load @ Garden 138
				1561 GARDEN 1561 GARDEN	138 03 1	8.000	6.355	Normar 12.47 KV Load @ Garden 138 Fairhill 12.47 kV Load @ Garden 138
1521 MAPLE	138 C	71.380	24.950 0.944	1561 GARDEN 1521 MAPLE	138 04 1 138 C1 1	7.000	8.474 7.000	Maximum Amount of Load WCI Can Restore
1770 MCD ST	138 C	2.580	0.090 0.999	1770 MCD ST	138 C1 1 138 C1 1	4.000	3.000	Restores McDonald Steet Substation
1443 CENTRAL	138 C	30.890	19.390 0.847	1443 CENTRAL	138 01 1	8.000	8.000	Maximum Amount of Load Central Can Restore
1443 CENTRAL 1443 CENTRAL	138 MI 138 M2	36.430	21.910 0.857	1445 CENTRAL	120 01 1	0.000	0.000	MAXIMUM AMOUNT OF LOAD CENTRAL CAN RESCORE
1443 CENTRAL 1447 CORTLAND	138 MZ	20.330	5.530 0.965	1447 CORTLAND	138 01 1	7.000	6.777	Mecca 12.47 kV Circuit @ Cortland 138
133/ CORTHAND	130 0	20.330	5.550 0.965	1447 CORTLAND 1447 CORTLAND	138 01 1	7.000	6.777	Colonial 12.47 kV Circuit @ Cortland 138
				1447 CORTLAND 1447 CORTLAND	138 02 1	7.000	6.777	Jacoby 12.47 kV Circuit @ Cortland 138
1506 FERN	138 0	20.930	5.690 0.965	1506 FERN	138 03 1	8.000	7.611	Bazetta 12.47 kV Circuit @ Fern 138
TOOD LEVEN	130 0	20.930	5.050 0.965	1506 FERN 1506 FERN	138 01 1	6.000	5.708	Perkins-Jones 12.47 kV Circuit @ Fern 138
				1506 FERN	138 02 1	8.000	7.611	Ivy Hill 12.47 kV Circuit @ Fern 138
3180 BEECHWOOD	69 O	18.930	5.140 0.965	3180 BEECHWOOD	69 01 0	22.000	18.930	Beechwood Substation Load
STOR DELCHINGOD		10.550	2.110 0.905	CLEO DILCHIOOD	07.01 0	22.000	10.550	

Green: Part of Eastern (Delta Blackstart) Restoration Plan

Orange: Part of Southern (Wylie Blackstart) Restoration Plan

Pink: Unable to Locate Load in Database Bold: Value Used after Discussions with TO Staff

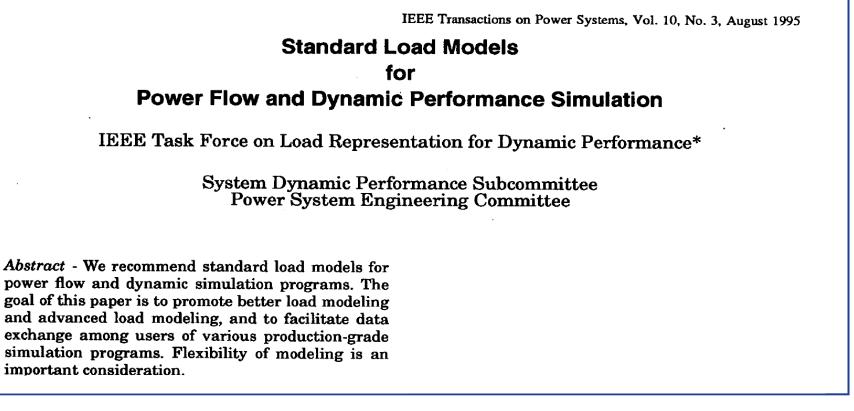
Modeling the Power Plants

A primary objective of this study is to investigate the black start capable power plant's ability to start local auxiliary loads and black-started power plants capable to serve system load when the transmission system is restored. In order to accomplish this task, each power plant has to be modeled in slightly more detail than may be provided in the original database.

Based on the power plant one-line diagrams, high level representations of each plant's internal power system needs to be modeled. The details associated with these power plant models will be discussed later.

Note that these "detailed" models can either model the entire auxiliary system or a high-level, yet conservative estimation.

If further detail is required, the complete power plants electrical system would need to be modeled.


Dynamic Database Modifications

- Auxiliary Load Model Representation
- System Load Model Representation
- Power Plant Unit Representation

Load Models

All load models were modeled based on the paper written by the IEEE Task Force on Load Representation for Dynamic Performance.

Auxiliary & System Load Models

Туре	R _s	X _{so}	Xm	R _r	Xro	A	B	D	H	Load Factor
1	0.031	0.1	3.2	0.018	0.18	1	0	ō	0.7	0.6
2	0.013	0.067	3.8	0.009	0.17	1	0	0	1.5	0.8
3	0.013	0.14	2.4	0.009	0.12	1	0	0	0.8	0.7
4	0.013	0.14	2.4	0.009	0.12	1	0	0	1.5	0.7
5	0.077	0.107	2.22	0.079	0.098	1	0	0	0.74	0.46
6	0.035	0.094	2.8	0.048	0.163	1	0	0	0.93	0.6
7	0.064	0.091	2.23	0.059	0.071	0.2	0	0	0.34	0.8

Table 3: Typical Induction Motor Data [13,14]^a

 a. Data is suitable for large-scale simulations where motors do not stall Type 1: Small industrial motor.
 Type 2: Large industrial motor.

Type 3: Water pump.

Type 4: Power plant auxiliary.

Type 5: Weighted aggregate of residential motors.

Type 6: Weighted aggregate of residential and industrial motors.

Type 7: Weighted aggregate of motors dominated by air conditioning.

Auxiliary Load Model:

The type 4 model, which represents typical power plant auxiliaries, can be used as a generic model.

System Load Models:

The type 5 model, which represents a weighted aggregate of typical residential motor load, can be used for the majority of the transmission and sub-transmission load models. For select customer loads, the type 2 model, which represents large industrial motors, can be used if the known location is purely industrial in nature.

imagination at work

Load Model Sensitivity

As part of a sensitivity analysis, five variations in load modeling can be compared:

1. 100% Static Load.
 2. 25% Motor Load / 75 % Static Load
 3. 50% Motor Load / 50% Static Load
 4. 75% Motor Load / 25% Static Load, and
 5. 100% Motor Load.

All static load model representation can be of constant current real power and constant impedance reactive power load. Most transient stability results should be based on the conservative approach of 100% motor modeling with the other variations being used if the system restoration simulation step can not survive or operating limits are in violation.

Power Plant Unit Representation

Accurate modeling of the individual generating units in the dynamics dataset are determined to be of the **<u>highest importance</u>** in performing this type of analysis.

The original models provided by NERC/ISOs/TOs/Utilities can be used for this type of study, but past experience has determined that some of the models were of poor quality or inaccurate in modeling the correct behavior of the equipment.

This is especially true with an Eastern Interconnect case versus one used in ERCOT or WECC. Established and ongoing generator testing and model validation programs in these regions are more likely to provide these better models. There may still be instances where models need to be modified.

System Restoration Procedure Tools

• Steady-State Restoration Analysis Tool

- Modified version of SSTOOLs
- Dynamic Restoration Analysis Tool
 - Modified version of DYTOOLs
- Specialized EPCLs

Examples from a Black Start / System Restoration Study

The TO, Power Plants, and Substations names have been changed in order to protect the guilty!!!

imagination at work

Define System Criteria

• Steady-State Criteria

- ✓ Absolute voltage magnitude for 69 kV and above must be between 0.95 and 1.05 per unit.
- ✓ Absolute voltage magnitude for 23 kV and below must be between 0.95 and 1.07 per unit.
- ✓ All branches and transformers cannot violate their continuous thermal ratings.
- ✓ The power reserves of online power plants must not be depleted.
- \checkmark The reactive reserves of online power plants must not be depleted.

• Transient Stability Criteria

- ✓ Excessive voltage dips that may affect motor stalling, contactor dropout or line / generator tripping.
- ✓ Excessive frequency dips that may affect line / turbine tripping.
- \checkmark Sustained high reactive power output that may affect OEL performance.
- ✓ Undamped or excessive power/angle oscillations that may cause various system responses.

Define System Criteria

In order to determine if any off nominal frequency event could lead to a turbine trip, the following settings were observed.

Modern Gas Turbines:

Instantaneous Trip:	< 56.4 Hz
Instantaneous Trip:	> 64.8 Hz
Unlimited Operation:	Between 56.4 to 64.8 Hz

Modern Steam Turbines^[8]:

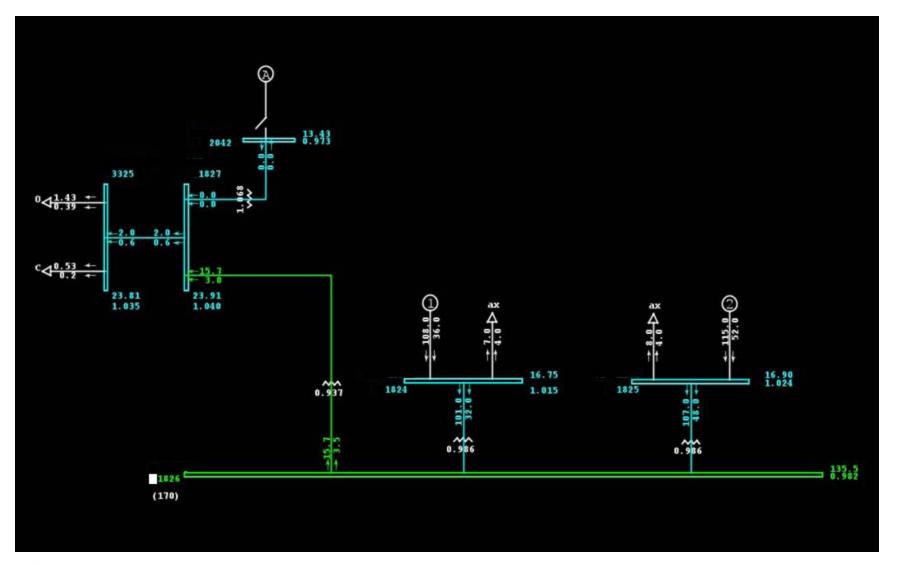
	60 HZ Units	
Lifetime Limit	Frequenc	y Range
Unlimited	57.0 to (52.5 Hz
90 minutes	56.5 to 57.0 Hz	62.5 to 63.0 Hz
12 minutes	56.0 to 56.5 Hz	63.0 to 63.5 Hz
1 minute	55.0 to 56.0 Hz	63.5 to 65.0 Hz

Older Steam Turbines[9]:

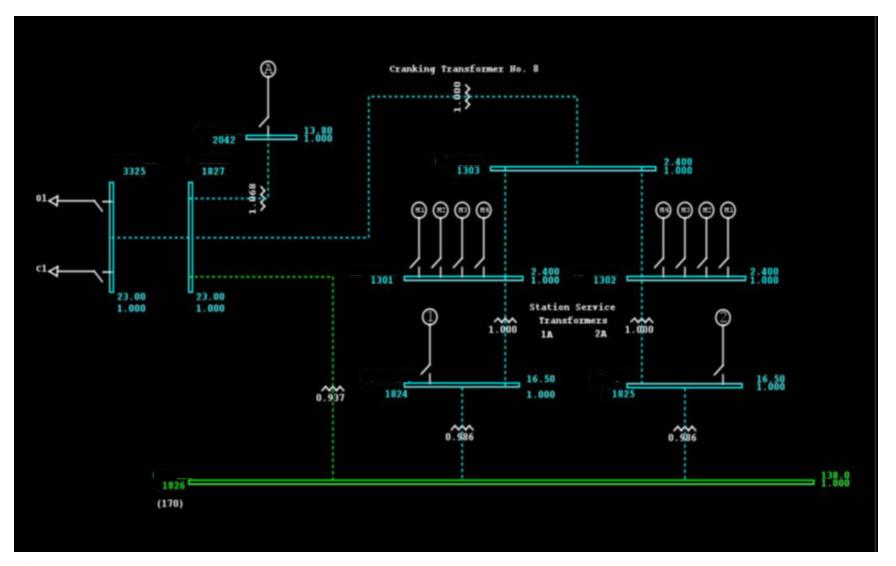
TURBINE CUMULATIVE OFF-FREQUENCY LIMITS

Operation Time to Some Damage	Variation From Rated Frequency (Hz)
Unlimited	± 0.6
90 Minutes	± 0.6 to ± 1.4
12 Minutes	$\pm \ 1.4 \ to \pm 1.9$
1 Minute	± 1.9 to ± 2.4

- 1. Isolation of the Local Transmission System
- 2. Startup of Auxiliary Load via the Delta Generation Station Gas Turbine
- 3. Setting Up the Local Transmission System Prior to Load Restoration
- 4. Local Area Load Restoration via the Delta Generating Station Units 1 and 2.


- 1. Isolation of the Local Transmission System
- 2. Startup of Auxiliary Load via the Delta Generation Station Gas Turbine
- 3. Setting Up the Local Transmission System Prior to Load Restoration
- 4. Local Area Load Restoration via the Delta Generating Station Units 1 and 2.

- 1. Isolation of the Local Transmission System
- 2. Startup of Auxiliary Load via the Delta Generation Station Gas Turbine
- 3. Setting Up the Local Transmission System Prior to Load Restoration
- 4. Local Area Load Restoration via the Delta Generating Station Units 1 and 2.



Modeling the Delta Generating Station (Before)

Modeling the Delta Generating Station (After)

Delta Auxiliary Load

Unit No.1 Auxiliary Load	HP	MW
Forced Draft Blower No.1A	2000	1.4920
Forced Draft Blower No.1B	2000	1.4920
Boiler Feed Pump No. 1A	1500	1.1190
Boiler Feed Pump No. 1B	1500	1.1190
Boiler Feed Pump No. 1C	1500	1.1190
Coal Crusher No. 1 FWD	600	0.4476
Coal Crusher No. 2 FWD	600	0.4476
Circ. Water Pump No. 1A	400	0.2984
Circ. Water Pump No. 1B	400	0.2984
Condensate Pump No. 1A	300	0.2238
Condensate Pump No. 1B	300	0.2238
SOOT Blower Air Comp. No.1	300	0.2238
AQC Ash Water Supply Pump A	250	0.1865
Ash Disposal Pump No. 1	200	0.1492
	11850	8.84

Unit No.2 Auxiliary Load	HP	MW
Force Draft Blower No. 2A	2000	1.4920
Force Draft Blower No. 2B	2000	1.4920
Boiler Feed Pump No. 2A	1500	1.1190
Boiler Feed Pump No. 2B	1500	1.1190
Boiler Feed Pump No. 2C	1500	1.1190
SOOT Blower Air Comp. No.2	500	0.3730
Circ. Water Pump No. 2A	400	0.2984
Circ. Water Pump No. 2B	400	0.2984
Condensate Pump No. 2A	300	0.2238
Condensate Pump No. 2B	300	0.2238
Boiler Cooling Fan No. 1	250	0.1865
AQC Ash Water Supply Pump B	250	0.1865
Ash Disposal Pump No. 2	200	0.1492
	11100	8.28

Contingency No:	Contingency Description:
base	Base system (n-0)
close001	Closing in Delta Black Start Unit GSU
close002	Energizing Delta Black Start Unit
close003	Close Kinley Load D-69 4.16 kV Breaker 121-B-2
close004	Close Delta Black Start Auxiliary Transformer 23/2.3 kV and Motor Branches
close005	Energizing Delta Unit 1 Equivalent Auxiliary Load (M1)
close006	Energizing Delta Unit 1 Equivalent Auxiliary Load (M2)
close007	Energizing Delta Unit 1 Equivalent Auxiliary Load (M3)
close008	Energizing Delta Unit 1 Equivalent Auxiliary Load (M4)
close009	Energizing Delta Unit 2 Equivalent Auxiliary Load (M1)
close010	Energizing Delta Unit 2 Equivalent Auxiliary Load (M2)
close011	Energizing Delta Unit 2 Equivalent Auxiliary Load (M3)
close012	Energizing Delta Unit 2 Equivalent Auxiliary Load (M4)

Restoration Procedure (SSTOOLS)

```
# BLACK START PLAN
# Eastern Area (Delta Plant) Combustion Turbine Startup
#
# STEP #1: Connect Delta Black Start Unit to Kinley Load to Stabilize Unit
                                                                                           #
******
#
               "Closing in Delta to Kinley 23 kV Line"
close001
line 1827 3325 "1 " 1 1
savf "close001.sav"
п
#
close002
               "Energizing Delta Black Start Unit"
gens 2042 "A " 1
tran 1827 2042 "7 " 1
savf "close002.sav"
п
#
               "Energizing Kinley D-69 4.16 kV Load"
close003
load 3325 "01" 1
load 3325 "C1" 1
savf "close003.sav"
0
#
close004
              "Closing in Delta No. 8 Cranking TR 23/2.4 kV"
tran 1827 1303 "8 " 1
line 1303 1301 "1 " 1 1
line 1303 1302 "1 " 1 1
order
savf "close004.sav"
0
#
close005
               "Energizing Delta Unit 1 Equivalent Auxiliary Load (M1)"
gens 1301 "M1 " 1
savf "close005.sav"
0
#
close006
              "Energizing Delta Unit 1 Equivalent Auxiliary Load (M2)"
gens 1301 "M2 " 1
savf "close006.sav"
0
#
close007
               "Energizing Delta Unit 1 Equivalent Auxiliary Load (M3)"
gens 1301 "M3 " 1
savf "close007.sav"
0
#
close008
              "Energizing Delta Unit 1 Equivalent Auxiliary Load (M4)"
gens 1301 "M4 " 1
savf "close008.sav"
п
#
```


Restoration Procedure (SSTOOLS)

ASES save case	name		outag	e file	cont	rol file	output file	pre_epcl, post_epcl	, open⁄append
	_c0.sav		l_cO Delta	.otg	Delt	a.cntl	b1_ld1_v1_c0.crf		
rating	1 1								
-	ıı or zone∕aı	rea	from	to	kv	range	base pu	cont pu	delta
monitor	voltage	area	100	100		345.0			0.025
monitor	voltage	area	100	100	1.0	23.0	0.95 1.07	0.95 1.07	0.025
monitor	flows	area	100	100	1	900			
monitor	load	area	100	100					
monitor	gens	area	100	100	1				
monitor	svd	area	100	100	1	900			
monitor		area	100	100					
L									
LTC	10		solutio	_					
SVD	10		solutio	-		U) disal	oled, (1) ena	bled	
PAR	10		solutio						
dctap	10		solutio						
	00	AI	solutio	n ont	ion				

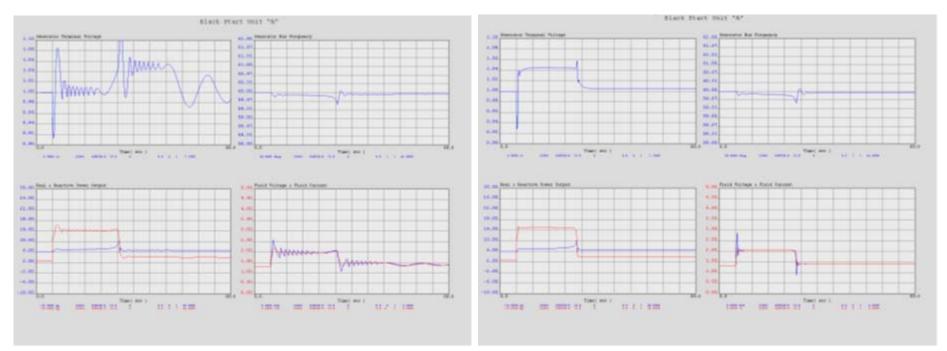
		Unit Cond	ditions:	Stea	ady-State Viola	tions	
Restoration Step	CT Pgen (MW)	CT Pres (MW)	CT Qgen (MVAr)	CT Qres (MVAr)	Absolute Voltage Issues	Branch Loading Issues	Reactive Limit Issues
close001	0.0	30.0	0.0	0.0			
close002	0.0	30.0	0.0	18.4			
close003	2.0	28.0	0.6	17.8			
close004	2.0	28.0	0.6	17.8			
close005	4.0	26.0	1.6	16.8			
close006	6.0	24.0	2.6	15.8			
close007	8.0	22.0	3.7	14.7			
close008	10.0	20.0	5.0	13.4			
close009	12.0	18.0	6.3	12.1			
close010	14.0	16.0	7.8	10.6			
close011	16.0	14.0	9.4	9.0		Overload	
close012	18.0	12.0	11.2	7.2		Overload	

The Delta gas turbine was able to supply the Kinley substation load (approximately 2 MW) as well as the auxiliary load for both Delta Units 1 and 2 (8 MW each). The Delta Gas Turbine also had adequate real and reactive power reserves post motor startup.

Issues of Concern:

Delta Gas Turbine Serving 16 MW of Auxiliary Load.

The FA rating of the cranking transformer no. 8 would be violated for the startup of all 16 MWs of auxiliary load.

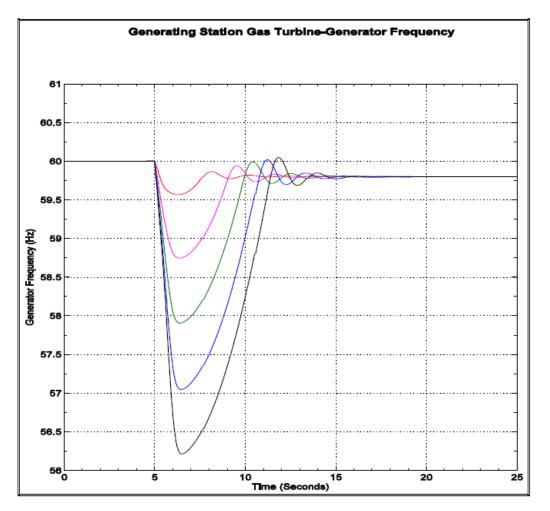

Resolution:

The TO should have discussion with plant personnel on the impact of energizing both Delta Generating Station unit's auxiliaries with the respect to overloading the cranking transformer, although the likelihood that the operators would perform a startup in the manner simulated is remote..

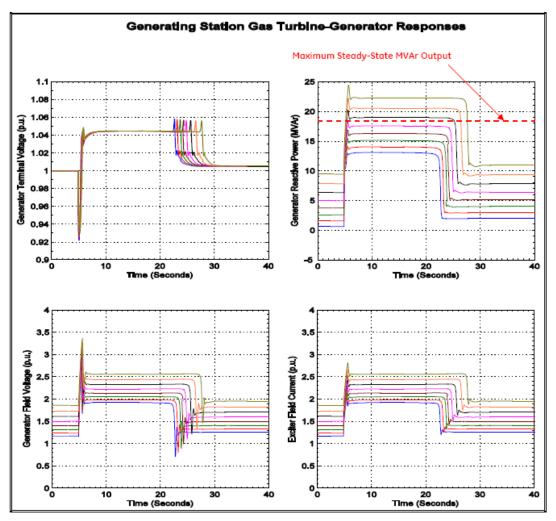
Dynamic Modeling Concerns

Delta Gas Turbine-Generator Excitation System Modeling Issues: EXDC4 versus EXAC1

Delta Gas Turbine-Governor Modeling Issues: GAST versus GGOV1


DATACHECK 0 MODSTAT 0 TIMEUNIT 0 ENDTIME 60 CLEARTIME 5.00 0.0667 0.1000 SAVEPATH cases\reruns4\ DYDPATH dyds\ CHFPATH chans\reruns4\ SORTDYD 0 1 FIXDATA 1 NUMPLOT 9 3 21 CONVMON 0 STEPSIZE 0.0041667	 /* Folder Path Where /* Folder Path Where /* Folder Path Where /* Sort Flag For *.dy /* Fix Bad Data Flag: /* Plot Number Interv 	 (0) Don't Run (1) Run (0) Seconds (1) Cycles ad-Time Clearing Time 1 After Fault; Clearing Power Flow *.sav Files Are Located Dynamic Models *.dyd & Fault Definit; Fo Store Channel *.chf Output Files d Files 1,210: (0) Do Not Sort, (1) (0) Do Not Fix Bad Data (1) Fix Bad als Of Pre-, During-, and Post-Fault r Flag: (0) Off, (1) On 	ion EPCL *.p Files Are Located L) Sort	*/ */ */ */ */ */ */ */ */
CASES # save case name pre-epcl pos [.] #	t-epcl in-run epcl fa 	ult epcl channel output	dyd [1] 	dyd[2] dyd[3]
# # DELTA UNIT #1 & UNIT #2 AUXILIA				
		close005-100.p m100-close004-005-mod	0	, , , ,
		close006-100.p m100-close005-006-mo close007-100.p m100-close006-007-mo	0	, , , ,
		close007-100.p m100-close008-007-m00 close008-100.p m100-close007-008-mo0	0	, , , ,
		close009-100.p m100-close007-000-mod	0	, , , ,
		close010-100.p m100-close009-010-mod	0	, , , ,
		close011-100.p m100-close010-011-mod	0	
		close012-100.p m100-close011-012-mod		
end		-	-	· · · · · · · · · · · · · · · · · · ·

		Unit Con	ditions:	Transie	ent Stabiltiy Vi	iolations	
Restoration Step	CT Pgen (MW)	CT Pres (MW)	CT Qgen (MVAr)	CT Qres (MVAr)	Voltage Dip Issues	Frequency Dip Issues	OEL Concerns
close001	0.0	30.0	0.0	0.0			
close002	0.0	30.0	0.0	18.4			
close003	2.0	28.0	0.6	17.8		Remote Chance of GT Trip	
close004	2.0	28.0	0.6	17.8			
close005	4.0	26.0	1.6	16.8			
close006	6.0	24.0	2.6	15.8			
close007	8.0	22.0	3.7	14.7			
close008	10.0	20.0	5.0	13.4			
close009	12.0	18.0	6.3	12.1			
close010	14.0	16.0	7.8	10.6			19 MVAR for 21 Seconds
close011	16.0	14.0	9.4	9.0			21 MVAR for 22 Seconds
close012	18.0	12.0	11.2	7.2			22 MVAR for 23 Seconds



Frequency Dip after Energization of Kinley Substation

Reactive Output Concerns During Startup of Delta Unit #2 Auxiliary Load

Transient Stability Resolutions

Power Plant Model Verification

Delta Gas Turbine-Generator Underfrequency Trip Settings

- Verify GT Underfrequency Trip Setpoints
- Energization of Kinley Substation Load in Two Steps

Delta Gas Turbine-Generator Over-Excitation Limiter Settings

- Verify Delta GT OEL Setpoints
- Discussions with Plant Personnel on Startup of all Auxiliary Motors

- 1. Isolation of the Local Transmission System
- 2. Startup of Auxiliary Load via the Delta Generation Station Gas Turbine
- 3. Setting Up the Local Transmission System Prior to Load Restoration
- 4. Local Area Load Restoration via the Delta Generating Station Units 1 and 2.

Contingency No:	Contingency Description:
close013	Closing in Maple - James 138 kV Line
close014	Closing in No. 1 TR 138/23 kV at Maple Substation
close015	Closing in NO. 1 TR 138/23 kV at Mahoningside Substation
close016	Closing in No.1 138/23 kV & No.3 TR 138/69 kV at Newton Substation
close017	Closing in No.1 TR 138/23 kV at James Substation
close018	Closing in No.1 TR 138/23 kV at Springs Substation
close019	Closing in No.2 TR 138/69 kV at Springs Substation
close020	Closing in No.1 TR 138/23 kV at River Substation
close021	Closing in Eagle - Walter 138 kV Line
close022	Closing in No.2 TR 138/69 kV at Eagle Substation
close023	Closing in No.2 TR 138/69 kV at Malury Substation
close024	Closing in No.3 TR 138/23 kV at Board Substation
close025	Closing in No.1 TR 138/69 kV At Knoxville Substation

- 1. Isolation of the Local Transmission System
- 2. Startup of Auxiliary Load via the Delta Generation Station Gas Turbine
- 3. Setting Up the Local Transmission System Prior to Load Restoration
- 4. Local Area Load Restoration via the Delta Generating Station Units 1 and 2.

Contingency No:	Contingency Description:
close026	Energizing Unit #1 at Delta
close027	Closing in Springs - Delta 138 kV Line
close028	Closing in Reagan Park - Mosey - Dirt 23 kV Path
close029	Energizing Load at Dirt Substation 4.16 kV (D-87)
close030	Energizing Load at Dirt Substation 4.16 kV (D-85)
close031	Energizing Load at Dirt Substation 4.16 kV (D-260)
close032	Closing in Maple - Delta 138 kV Line
close033	Closing in Maple - Warren Sewage - Peak 23 kV Path
close034	Closing in Maple - High Water 138 kV Line (Circuit 2)
close035	Closing in Maple - High Water 138 kV Line (Circuit 1)
close036	Closing in Springs - High Water 138 kV Line
close037	Closing in Blueberry - Delta 138 kV Line
close038	Closing in No.1 TR 138/23 kV at Blueberry and 23 kV Line to East Substation
close039	Closing in No.1 TR 138/23 kV at Blueberry and 23 kV Line to City Substation
close040	Closing in Blueberry - Knox 138 kV Line
close041	Closing in Knox - Fairy - Beechwood - Rocky - Northwest 69 kV Path
close042	Energizing Jessica 4.16 kV Load at Rocky
close043	Energizing Chesnut 4.16 kV Load at Rocky
close044	Energizing Freedom 4.16 kV Load at Northwest
close045	Energizing Ocean Park 12.47 kV Load at Northwest
close046	Closing in Eagle - Blueberry 138 kV Line
close047	Closing in Eagle - Walter 138 kV Line
close048	Closing in Masury - Springs 138 kV Line
close049	Closing in No.1 Cranking Transformer 138/23 kV at Delta Substation
close050	Delta Unit 1 Auxiliary Load Transfered to Unit #1
close051	Closing in Springs - River 138 kV Line
close052	Restores T-390 22.86 KV Circuit at River Substation
close053	Restores T-391 22.86 KV Circuit at River Substation
close054	Closing in Boardn - Cliff - River 138 kV Path

Contingency No:	Contingency Description:
close055	Board No. 8 TR & No. 9 TR - Energized by BKR 101-B-83
close056	Closing in Maple - Frank - Bridge - James 138 kV Path
close057	Closing in No.1 TR 138/23 kV at James Substation
close058	Closing in James - Mahonning 23 kV Line & St. Joe Hospital Load
close059	Closing in No.2 TR 138/69 kV at Springs Substation
close060	Closing in Springs - Church 69 kV Line & Church 8.32 kV Load
close061	Energizing Church 8.32 kV Load (D-226)
close062	Energizing Church 8.32 kV Load (D-227)
close063	Energizing Church 8.32 kV Load (D-229)
close064	Closing in Newton - GM - Todd - High Water 138 kV Path
close065	Closing in Newton - Wind - Garrett 69 kV Path & Load at Wind
close066	Energizing Garrett 825-A 12.47 kV Load
close067	Energizing Garrett 825-E 12.47 kV Load
close068	Closing in Mahonning - High Water 138 kV Line
close069	Closing in James - Mahonning 138 kV Line

Contingency No:	Contingency Description:
close070	Energizing Unit #2 at Delta
close071	Closing in Pack - James 138 kV Line
close072	Closing in Garden - Fern - Pack 138 kV Path & Candle 12.47 kV load
close073	Energizing Avalon 12.47 kV Load
close074	Energizing Normar 12.47 kV Load
close075	Energizing Fairhill 12.47 kV Load
close076	Energizing WCI Load
close077	Closing in Delta - McDonald - Central 138 kV Path & Central Load
close078	Energizing Central Load - Not To Exceed 8 MW
close079	Closing in Fern - Cort 138 kV Line & Mecca 12.47 kV Load
close080	Energizing General 12.47 kV Load
close081	Energizing Jacob 12.47 kV Load
close082	Energizing Bazettaville 12.47 kV Load
close083	Energizing Jones 12.47 kV Load
close084	Energizing Ivy Mountain 12.47 kV Load

close037	13.2	101.8	-0.4	36.4					High 23 kV			,
close038	15.5	99.5	0.3	35.7					High 23 kV			,
												1 -
close045	38.9	76.1	8.9	27.1					Low 69 kV			1
close046	42.0	73.0	8.5	27.5					Low 69 kV			(
										1	1	1
close061	78.1	36.9	13.1	22.9					Low 69 kV			
close062	82.5	32.5	14.6	21.4					Low 69 kV			
close063	87.8	27.2	16.6	19.4					Low 69 kV			
close064	87.8	27.2	15.0	21.0					Low 69 kV			
close065	91.8	23.2	16.3	19.7					Low 69 kV			
close066	94.1	20.9	17.2	18.8					Low 69 kV			
close067	100.0	15.0	19.5	16.5					Low 69 kV			
close068	100.0	15.0	19.0	17.0					Low 69 kV			
close069	100.0	15.0	18.9	17.1					Low 69 kV			

close076	100.0	15.0	16.4	19.6	33.7	81.3	13.3	38.7	Low 69 kV	
close077	100.0	15.0	16.4	19.6	36.7	78.3	13.2	38.8	Low 69 kV	
close078	100.0	15.0	19.2	16.8	44.8	70.2	15.7	36.3	Low 69 kV	
close079	100.0	15.0	20.3	15.7	51.7	63.3	16.7	35.3	Low 69 kV	
close080	100.0	15.0	21.7	14.3	58.6	56.4	18.0	34.0	Low 69 kV	
close081	100.0	15.0	23.2	12.8	65.5	49.5	19.3	32.7	Low 69 kV	
close082	100.0	15.0	24.8	11.2	73.3	41.7	20.8	31.2	Low 69 kV	
close083	100.0	15.0	26.1	9.9	79.1	35.9	22.1	29.9	Low 69 kV	

During the load restoration process, various voltage violations occur throughout the Eastern Area.

Issues of Concern:

Closing In The Delta – Blueberry 138 kV Transmission Line [HIGH 23 kV Bus Voltages]

Energization of Local Load at the Rocky and Northwest 69 kV Substations [LOW 69 kV Bus Voltages]

Energization of the Ivy Mountain 12.47 kV Load at the Fern 138 kV Substation [LOW 69 kV Bus Voltages]

Steady-State Resolutions

Closing In The Delta- Blueberry 138 kV Transmission Line:

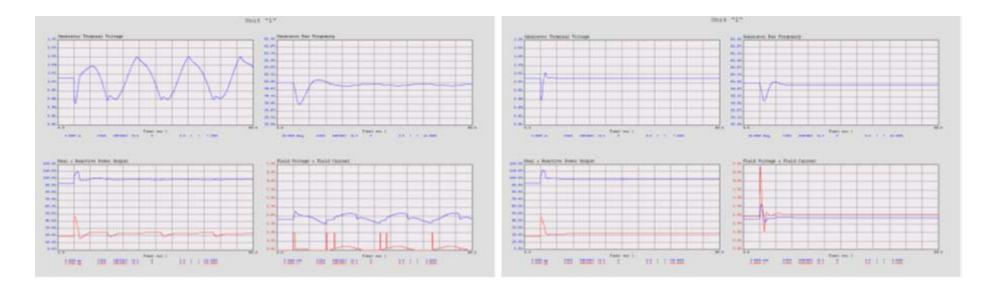
Lowering the voltage control reference of Delta Generating Station Unit #1, in turn lowering the reactive power output of the unit, can alleviate the high voltage violations seen near Blueberry 23 kV. It was observed that by dropping the control voltage by as little as 1% was sufficient enough in preventing the 23 kV voltage from going to above their high voltage limit. A decrease in voltage reference of 1% increased the reactive power reserves of the machine by less than 0.5 MVAr. Once the East and City 23 kV circuits have been reconnected, the Delta Generating Station Operator could resume normal terminal voltage regulation.

Steady-State Resolutions

Energization of Local Load at the Rocky and Northwest 69 kV Substations:

In order to alleviate the low 69 kV voltages experienced at and near the Rocky and Northwest 69 kV substations, the Delta Generating Station Operator could raise the control voltage reference by 1%. This was sufficient in bringing the 69 kV voltages within the normal voltage bandwidth. By raising the control voltage by 1%, the reactive reserves dropped by 0.5 MVAr.

Steady-State Resolutions


Energization of the Ivy Mountain 12.47 kV Load at the Fern138 kV Substation:

The 138 kV low voltages near Cort and Garden can also be brought back within normal operating range by raising the control voltage reference 1%. A second possible procedure to adjust the low 138 kV bus voltages is to close in the Garden to Central 138 kV transmission system. This would create a 138 kV loop in the area, in turn reducing the electrical distance between Cort/Garden and the Delta Generating Station sources, allowing the voltages to remain within limits.

Dynamic Modeling Concerns

Delta Steam Turbine-Generators Excitation System Modeling Issues: EXDC4 versus ESDC4B

Delta Steam Turbine-Governor Modeling Issues: TGOV1 versus IEEEG1 versus CCBT1

				Unit Con	Transient Stabiltiy Violations						
Restoration Step	Unit 1 Fgen / Fres (MSV)		Unit 1 Qgen / Qres (MVAr)		Unit 2 Pgen / Pres (MW)		Unit 2 Qgen / Qres (MVAr)		Voltage Dip Issues	Frequency Dip Issues	CEL Concerns
close028	3.3	111.7	1.0	35.0							
close050	51.9	63.1	7.6	28.4							
close055	66.4	48.6	10.5	25.5							
close067	100.0	15.0	19.5	16.5							
close072	100.0	15.0	11.3	24.7	6.4	108.6	9.3	42.7			
close075	100.0	15.0	14.9	21.1	26.7	88.3	12.1	39.9			
close078	100.0	15.0	19.2	16.8	44.8	70.2	15.7	36.3	Depressed 69 kV		Sustained Reactive Output
close084	100.0	15.0	27.9	8.2	86.9	28.1	10.2	8.2	Depressed 69 kV		

Transfer of Delta Generating Station Unit #1 Auxiliary Load (Method Unknown) Energization of Central Substation Load Energization of the Ivy Mountain 12.47 kV Load at the Fern138 kV Substation

Transient Stability Resolutions

Power Plant Model Verification

Delta Generating Station Auxiliary Load Transfer

- Verify Transfer Method
- Possible Issues with Reduced Voltage Transfer and All Auxiliary Motors Online
- More Detail Modeling may be needed.

Energization of Central Load

- Verify GT and ST OEL Setpoints
- Connect Central Load in Smallest Increments Possible

Rocky and Northwest 69 kV Substations

- Most Susceptible due to Electrical Distance from Sources
- Maintain constant monitoring of local buses

Accurate Power Plant Dynamic Modeling:

The biggest concern seen in this study is the uncertainty in dynamic models for the power plants. TOs should try to obtain the correct dynamic system models to accurately depict the unit's response to voltage and frequency excursions. While obtaining up to date models from the manufacturer is acceptable, it is highly recommended that the data be obtained, by a proven method, such as model validation tests. NERC Standard now MOD-25,26 & 27.

Continuous System Voltage Monitoring and Regulation:

Through most of the Eastern Area system restoration process, it was observed that several areas would experience events causing their bus voltages to go out of normal operating limits. The 23kV substations near Blueberry would often see sustained voltage rises, while the 69kV substations near Rocky and Northwest would experience voltage depressions on a relatively regular basis. It was observed that all steady-state and transient stability voltage violations could be quelled through raising or lowering of the Delta Generating Station voltage control references by small increments. It is highly recommended that during a load restoration procedure, all system voltages be monitored closely and that communication with power plants for use of voltage regulation be available at all times.

Verification of Black Start Capable Units Protection Settings:

During the auxiliary motor startup procedures, it was observed that the Delta Generation Station Gas Turbine-Generator could experience a trip due to unknown protection settings. The most likely actions could come from an underfrequency trip for the Delta Gas Turbine or an over-excitation limiter for both units. It is recommended that TOs confirm all unit protection settings with plant owners.

Review of Internal Power Plant Black Start Procedures:

A considerable amount of unknowns that take place in this study are the exact methods used internally at the power plant during the restoration process (i.e. motor energization order, auxiliary load transfer, etc.) It is recommended, that if possible, some detail be included in the Black Start Plan in order to confirm the plans true effectiveness.

Proposed Additions to the Existing Black Start Plan:

It is recommended that the TOs Black Start Plan received at the onset of this study be modified to include the following section:

1. The Kinley Substation Connection should be performed in smaller load increments (1 MW or less).

Final Conclusion:

In implementing the proposed additions to the existing TOs Black Start plan and implementing the recommendation in a practical manner, it was found that the existing plan for the Eastern Area is capable of restoring system load after a local grid blackout with no major concerns as they apply to steadystate and dynamic/transient stability point of view up to the point studied.

Questions?

