WECC DEWG

Periodic Data Exchange Protocol Issues

Introduction

This document discusses various options discussed by the NWPP IDE-TC and WECC DEWG when considering a common mechanism for entities to exchange periodic (1 minute or longer) data between entities in the power industry. While the NWPP IDE-TC were specifically working on replacing the remaining X.25 network data exchanges, the DEWG has a broader view of a common method of exchanging data between all power industry entities in the WECC. Much of the document below is history. This document was the first white paper used to discuss options available and replace remaining (non real-time) data exchange. This document then, serves to provide the same information to the industry as was originally used in the decision to create an XML schema that defines a common, non-proprietary, standard for exchanging data.

The XML schema and documents contained in this document do not reflect the current EIDE protocol. This document preceded it’s creation. This paper was used to initiate a broader discussion at a meeting of the NWPP IDE-TC that took place in December of 2000. At that meeting it was unanimously decided to pursue implementation of an XML based protocol.

Transport Mechanisms

In order to allow exchange of data over most networks, including the WON and the internet, TCP/IP was chosen as the transport protocol. TCP/IP is a defacto industry standard. The new data exchange protocol should follow industry and other standards as appropriate in order to maximize the use of existing technology and infrastructure.

Though some have reservations about using the internet for data exchange, it is currently commonly used by businesses and the utility industry. E-Tagging is one example of how the internet is currently being used for mission critical data exchange in the power industry. It is likely that there may be some entities that are not connected to the WON (such as PSE’s) that will want to exchange data. Therefore whatever protocol is chosen shouldn’t limit the data exchange to the WON by design or policy.

Three transfer protocols that are commonly used in the TCP/IP world are ftp (file transfer protocol), http (hypertext transfer protocol), and https (encrypted version of http).

ftp is used widely today to exchange data. A typical exchange works as follows:

1. Some process writes data in a specific format to a file.

2. The process starts an ftp script.

3. The ftp script logs into the remote system (usually through a firewall and over the internet).

4. The remote ftp server (usually in a DMZ) writes the file to a specific directory.

5. A periodic task goes out to the directory in the DMZ, maybe even using ftp, gets the file and processes it.

An example of a process that uses http is the E-Tagging system. A typical http exchange works like this:

1. The receiver has a web site and has provided a URL (Universal Resource Locator).

2. The sending site uses a function call (usually "httpget") passing the URL and the "body". In this case the body would be the data that is being sent. The receiver returns an acknowledgement of some kind automatically as part of the session and possibly a text reply as well. So the "httpget" function returns with a status (did the file make it or not) and possibly a reply depending on the receiving site.

3. The receiving software may either write the received body to a file or process it immediately. If the received body is written to a file, another periodic task is usually set up to pick it up and process it.

Https works the same as http except the sender usually needs to specify a different function or the same function with an additional parameter or two. Https provides security by using asymmetric key encryption (explained later).

Data Format Definitions

Data exchange requires agreement on the format of the data. The format is basically a description of rules that the data populating a file will follow. The better the description, the easier it is for validation rules to be written on both the sending and receiving sides.

If data is exchanged in straight ASCII or binary format, then the rules that the file must adhere to must be documented manually as best as possible. For example, "column one will contain text, 40 characters max, column two will be the date in the format ccyymmdd hh24:mi…". The document is then sent to the various implementers and they are expected to create systems that can both create and parse files according to the described format.

XML (eXtensible Markup Language) was created to simplify the description process and allow the creation of the description and the creation and processing of files associated with it to be automated. Data is exchanged using XML "documents" while the description corresponding to the document is contained in something called a "schema". The XML document that the parties exchange is just a text file delimited with "tags". An example looks like this: <firstname>Bobby</firstname>. The power of XML is in it's rich schema definition language that allows designers to easily specify data types, ranges, min and max occurrences, enumerated types, and even develop their own data types. These schemas can then be used to automatically validate the documents that contain the data. The XML documents can be viewed in any web browser in their default format or style sheets can be created for the schemas to specify the display properties. The W3C (World Wide Web Consortium) is responsible for developing the XML standards. Their web site contains a primer which can be found at "http://www.w3.org/TR/xmlschema-0/".

 An example of an XML schema that could be used for schedule data from the old WECC X.25 protocol is shown graphically below:

[image: image1.wmf]Sender

Receiver

Sender uses httpsget to

send file to receiver and

reads return code

Sender

Receiver

Receiver uses httpsget to

send acknowledgement

message to sender and

reads return code

From the graphic you can see that a compliant XML document based on this schema can contain one and only one "complex" element called WSCC_Schedule. This element is composed of three simple elements, Source, Target, and ProcessID and one complex element called Schedule. The three simple elements must occur once and only once in the document. The element Schedule occurs 1 to infinity (unbounded) times and is composed of five simple elements, ScheduleDate, Account.A-Account.D and one complex element called HourlyValues. The element HourlyValues occurs a minimum of one and maximum of 25 times and is composed of the two simple elements HourEnding and MWh. You will also note that comments can be included with each element so the schema documentation can be embedded within the schema itself.

The data types and validation rules can be seen in more detail in the text version of the schema shown below.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.1 (http://www.xmlspy.com) by James Hansen (Seattle City Light) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="WSCC_Schedule">

<xs:annotation>

<xs:documentation>Sample Pid 4,5,14</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="Source">

<xs:annotation>

<xs:documentation>NERC ID of Party Sending the Document</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:whiteSpace value="preserve"/>

<xs:minLength value="3"/>

<xs:maxLength value="6"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Target">

<xs:annotation>

<xs:documentation>NERC ID of intended Receiver</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:minLength value="3"/>

<xs:maxLength value="6"/>

<xs:whiteSpace value="preserve"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="ProcessID">

<xs:annotation>

<xs:documentation>PID 4,5 or 14</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:int">

<xs:enumeration value="4"/>

<xs:enumeration value="5"/>

<xs:enumeration value="14"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Schedule">

<xs:annotation>

<xs:documentation>Schedule(s) or Net Schedule(s)</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="ScheduleDate" type="xs:date">

<xs:annotation>

<xs:documentation>CCYY-MM-DD</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Account.A" type="xs:int"/>

<xs:element name="Account.B" type="xs:int"/>

<xs:element name="Account.C" type="xs:int"/>

<xs:element name="Account.D" type="xs:int"/>

<xs:element name="HourlyValues">

<xs:complexType>

<xs:sequence maxOccurs="25">

<xs:element name="HourEnding">

<xs:simpleType>

<xs:restriction base="xs:int">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="25"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="MWh" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:schema>
Long and complicated looking perhaps but it's not really. Here's an example using the element we called "Source"

<xs:element name="Source">(name of the element

<xs:annotation>(documentation start tag

<xs:documentation>NERC ID of Party Sending the Document</xs:documentation>

</xs:annotation>(documentation end tag

<xs:simpleType>(begin simple type definition

<xs:restriction base="xs:string">(it is a string

<xs:whiteSpace value="preserve"/>(preserve the white spaces (don't collapse them)

<xs:minLength value="3"/>(it must be at least 3 characters long

<xs:maxLength value="6"/>(it can be no bigger than 6 characters long

</xs:restriction>(end of the validation rules

</xs:simpleType>(end of the type definition

 </xs:element>(end of the element definition

Similarly ProcessID is defined as:

<xs:element name="ProcessID">

<xs:annotation>

<xs:documentation>PID 4,5 or 14</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:int">(it's an integer

<xs:enumeration value="4"/>(valid values are 4

<xs:enumeration value="5"/>(5

<xs:enumeration value="14"/>(and 14

</xs:restriction>

</xs:simpleType>

 </xs:element>
None of the tags were hand written. They are all created using the tool used to design the schema example. Only the element name, documentation, type selection, and restriction selections were hand entered or selected. The simple types each have their own set of possible "facets", "patterns", or "enumerations". Facets are things like minlength, maxlength, whitespace, etc. Patterns are quite extensive and allow you to specify things like "this position in the string must be numeric, this one must be alphanumeric, this must be a comma" etc.

A document (i.e. the data) created according to the above schema (i.e. format) might look like this (notes added):

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.1 (http://www.xmlspy.com) by James Hansen (Seattle City Light) -->
<!--Sample XML file generated by XML Spy v4.1 (http://www.xmlspy.com)-->
<WSCC_Schedule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" (beginning of WSCC_Schedule Doc xsi:noNamespaceSchemaLocation="C:\jhwork\DOCS\DETC\WSCC_Schedule.xsd">(and more of the beginning

<Source>BPAP</Source>(BPAP is the source (note begin tag is <tag> and end tag is </tag>)

<Target>GCPD</Target>(GCPD is the intended receiver

<ProcessID>4</ProcessID>(this is PID 4 type data

<Schedule>(Beginning of the Schedule Array

<ScheduleDate>2001-12-12</ScheduleDate> (First Schedule's Date

<Account.A>5</Account.A>(First Schedule's Account Code A-D

<Account.B>003</Account.B>

<Account.C>023</Account.C>

<Account.D>036</Account.D>

<HourlyValues>(Begin the Hourly Values Array

<HourEnding>1</HourEnding>(HE 1

<MWh>134</MWh>(134 MWh

<HourEnding>2</HourEnding>

<MWh>115</MWh>

</HourlyValues>(End the Hourly Values Array

<ScheduleDate>2001-12-13</ScheduleDate>(Second Schedule's Start Date

<Account.A>5</Account.A>

<Account.B>003</Account.B>

<Account.C>023</Account.C>

<Account.D>289</Account.D>

<HourlyValues>

<HourEnding>8</HourEnding>

<MWh>115</MWh>

<HourEnding>9</HourEnding>

<MWh>124</MWh>

</HourlyValues>

</Schedule> (End of the Schedule Array
</WSCC_Schedule>(End of the WSCC_Schedule Document

The example isn't very realistic since it doesn't contain 24 hours of data and a bunch of accounts (since it was created by hand). What you see above is the begin tags, end tags, with data values embedded between them and some notes ((this is a note) that I am hoping explain all the key elements of the data document.

If you are interested in more information about the possible data types, patterns, enumerations, complex type rules etc, visit the W3C web page on XML Structures (http://www.w3.org/TR/xmlschema-1/) and on Data Types (http://www.w3.org/TR/xmlschema-2/).

A Pid 1 and 2 XML schema might look like this:

[image: image2.wmf]Sender

Receiver

Sender uses httpsget to

send file to receiver and

reads return code

Sender

Receiver

Receiver uses httpsget to

send acknowledgement

message to sender and

reads return code

The graphic above looks similar to the Schedule XML schema except that each document is for a specific reading date time (one and only one occurrence of ReadingDateTime) and there are multiple meter accounts and MWh's. The cumulativeMWh element is optional and may be missing from the document.

The text view of the document shows the detailed schema restrictions and enumerations:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.1 (http://www.xmlspy.com) by James Hansen (Seattle City Light) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="WSCC_Meter">

<xs:annotation>

<xs:documentation>Sample Pid 1 and 2</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="Source">

<xs:annotation>

<xs:documentation>NERC ID of Party Sending the Document</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:whiteSpace value="preserve"/>

<xs:minLength value="3"/>

<xs:maxLength value="6"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Target">

<xs:annotation>

<xs:documentation>NERC ID of intended Receiver</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:minLength value="3"/>

<xs:maxLength value="6"/>

<xs:whiteSpace value="preserve"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="ProcessID">

<xs:annotation>

<xs:documentation>PID 1 or 2</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:int">

<xs:enumeration value="1"/>

<xs:enumeration value="2"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="ReadingDateTime" type="xs:dateTime">

<xs:annotation>

<xs:documentation>CCYY-MM-DDTHH24:MI:SS</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="Meter">

<xs:annotation>

<xs:documentation>Actual(s) or net Actual(s)</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="Account.A" type="xs:int"/>

<xs:element name="Account.B" type="xs:int"/>

<xs:element name="Account.C" type="xs:int"/>

<xs:element name="Account.D" type="xs:int"/>

<xs:element name="MWh" type="xs:int"/>

<xs:element name="CumulativeMWh" type="xs:int" minOccurs="0">

<xs:annotation>

<xs:documentation>This is an optional field</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:schema>
Note that the PID enumerations have been changed to allow 1 and 2 only. The date field has been converted to a Date/Time field. It would have been valid to use Date and Hour Ending instead. Had this been a real attempt at creating a PID 1 and 2 XML schema vs. a sample I'm sure we would have done so.

And an example of the PID 1 and 2 XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.1 (http://www.xmlspy.com) by James Hansen (Seattle City Light) -->
<!--Sample XML file generated by XML Spy v4.1 (http://www.xmlspy.com)-->
<WSCC_Meter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="C:\jhwork\DOCS\DETC\WSCC_Actual.xsd">

<Source>PSEI</Source>

<Target>AVA</Target>

<ProcessID>1</ProcessID>

<ReadingDateTime>2001-12-13T02:00:00</ReadingDateTime>

<Meter>

<Account.A>03</Account.A>

<Account.B>044</Account.B>

<Account.C>046</Account.C>

<Account.D>016</Account.D>

<MWh>8</MWh>

<CumulativeMWh>15</CumulativeMWh>

<Account.A>03</Account.A>

<Account.B>044</Account.B>

<Account.C>046</Account.C>

<Account.D>017</Account.D>

<MWh>214</MWh>

<CumulativeMWh>312</CumulativeMWh>

</Meter>
</WSCC_Meter>
The sample schemas were created using XML Spy V4.1 (in case you missed the company's own advertisements embedded in the XML documents!) which you can download and evaluate or use to create or manipulate schemas. The tool is inexpensive to purchase. The company site is: http://www.xmlspy.com/.

Data Exchange Communications Protocol

Using ftp, http, or https it is possible to set up a data exchange communications protocol. The protocol could use message passing to return acknowledgement codes to the party who sent the data. These can be as simple or as complex as necessary since the messages themselves would be designed by the DEWG.

A few of the main goals of our data exchange communications protocol include ensuring that whatever data is sent arrives without error, is intact and in all other ways valid.

In order to ensure that something arrives without error, the error return code of the transport mechanism must be evaluated. Ftp unfortunately falls short here because it does not necessarily return an error code if the file is not fully transferred. Http (and https) both immediately return a response code. Ensuring that the transport works correctly is generally the responsibility of the sender. In some actively listening systems the receiver can also detect transmission errors.

The next step is to validate the file that was received. This can be done by parsing the file and checking that it passes all of the validation rules. If the entire file passes, then it is a pretty safe bet that the file was received intact, however another step would really be required to ensure this completely, and that would be to perform some sort of security check to ensure the file was unaltered in transit. This latter point will be dealt with in our pursuit of security and will be discussed later.

After the receiver validates the file, a response message should be returned to the sender with some form of acknowledgement code and a reference to the file that was validated. In order to facilitate the message response, each of the XML documents could have another element added to it that would be a unique ID, usually a sequential integer. The receiver then would populate a field in the response message with acknowledged document ID, letting the sender know the documents fate. Response from the receiver is usually expected within a certain time frame so the sender could periodically check to ensure that a response has been received for each message sent and alert the user if a timeout occurs, or try to send another document.

Depending on how we decide the communications protocol should work, the receipt acknowledgement message could be separate from the validation acknowledgement message. The two would also then have different timeout values.

A typical exchange with a single acknowledgement message might look like the following using https:

[image: image3.png]TERC 10 of Paty Sending
the Document

TERC 1D of nanded
Recaiver

WSCC_Schedule

Sample P 45,14

PID 4514

Ty

Sehadle or et
Shadiet)

FhourEnding

Data Exchange Communications Protocol Security Issues

There are three security goals of a data exchange communications protocol. They are Security (no one else can read the data), Identity (the parties involved in the communication are who they claim to be), and authenticity (the data received is identical with that sent). One of the standard methods used to achieve these three goals is to use asymmetric key encryption. In asymmetric key encryption the receiver has a pair of keys that are mathematically related to one another. The receiver gives the sender the "public key" and asks the sender to encrypt all data using this key, then the receiver decrypts the data using it's "private key" which effectively reverses the encryption. The receiver only gives out the public key and never the private key. The encryption mechanism, based on the mathematical relationship between public and private keys, is very powerful and guarantees a high level of security from attack. The mathematical relationship is very complex. Https uses SSL (Secure Sockets Layer) which employs this method of encryption.

This same mechanism can be used to ensure identity. This is achieved by simply reversing the role of the public and private keys. Anything encrypted with the private key can only be decrypted by the public key. SSL uses this when establishing a connection between sender and receiver. Each passes it's public key to the other and each uses it to encode/decode messages. This ensures that the sender and receiver are both talking to who they think they are if the identity of the public key can be independently verified. This is where the certificate authority comes in to play. A digital certificate is used to generate the key pairs. The digital certificate can be obtained from an independently trusted company, such as Verisign, that grants the certificate to a representative of a company after ensuring that the representative and the company are both legitimate. The public key is then checked against a list of valid digital certificates published by Verisign. This is all done automatically when the https session is created.

Authenticity is guaranteed by the ability of the receiver to correctly decrypt the message. The decryption fails if the document has been tampered with.

Another method of guaranteeing authenticity, identity, and security is to encrypt a file using an encryption program, then attach a digital signature to the document. The authenticity of the document can be verified by decoding the signature using the sender's public key. The document could then be decrypted at the receiving end by an identical decryption program.

This would be the method that we would need to use if we were to exchange documents using ftp and wanted to encrypt them, authenticate them, and ensure identity. The problem with using this method is that separate steps by separate programs are usually required on each end to processes the file, usually by a program that runs on only one platform.

Https is a multi-platform solution that guarantees 128 bit encryption, authenticity, and identity with built-in functionality.

Communicating Securely

There are three methods discussed here for securely moving files from the internet into the internal network. In two of the methods, the firewall is set up to allow no communications from outside the firewall to the inside. In one of the methods, the firewall is set up to allow communications from one IP in the DMZ via one IP port, to one IP in the internal network.

Method 1: Files are dropped somewhere in the DMZ, internal process goes out periodically and retrieves files from an "inbox" and processes them. This method works well and allows the internal system to securely access the external system and retrieve data. The firewall is configured so that communications are allowed from inside to outside only. The drawback of this method is that it is not instantaneous. It is possible to create a processes that lives only on the DMZ machine that is set up to listen for contact and respond immediately to the sender however the data remains on the DMZ machine until the internal processes picks it up. This is the only method available for ftp.

Method 2: A processes from inside the firewall opens a (bi-directional) socket connection to a process in the DMZ. The process in the DMZ is set up to listen for an http or https connection from the internet as well. When the connection is established, the DMZ process can pass data from the internet immediately to the internal process via the socket connection. The firewall is configured so that communications are allowed from inside to outside only. The data is processed immediately and the DMZ process can create or be given a response to provide to the sender in the same http or https session.

Method 3: A "hole" is opened in the firewall that allows communications from a specific IP in the DMZ to a specific IP in the internal network at a specific port. The internal machine's default response to activity on the port is to ignore it completely (i.e., no login prompt). A listener is set up on the internal machine to handle activity on the port. A process in the DMZ passes data from the sender to the specific IP and port. The firewall is configured so that communications are allowed from inside to outside only except for this one "hole". The data is processed immediately and the internal process can create a response to provide to the sender in the same http or https session. Some network security staff react negatively to the phrase "hole in the firewall" equating it to "hole in the boat". Being under the impression that "a hacker will find their way in". For those that are knowledgeable about how TCP/IP sockets work it should be apparent that this is not an equivalent phrase and that a hacker wouldn't have any luck breaking into any systems even if they were to break into your DMZ, compromise the machine that this processes is being communicated with from, and also find the IP and port. This method was checked with InfraGaurd, the anti-hacker group organized by the FBI and CIA. They verified that this method is secure.

Recommended Approach

WECC members are exchanging meter, schedule, and other types of periodic data (stream flows, elevations, etc) using X.25 Pid 1, 2, 4, 5 and 14. Exchange of this type of data must be provided for in the new protocol and the new protocol should have even greater flexibility and ease of implementation. For example 5, 10, and 15 minute meter and/or scheduling intervals could become mandatory at some point.

The decision of whether to limit data exchange to the WON or not is probably off the table. As long as publicly available, cross platform ftp, http, or https is used, the decision can be left up to individual companies on which physical infrastructure they want to use for this data exchange. Since companies may choose to use the internet, at least for some of their data exchanges, then we should have a fallback plan documented in case the internet is unavailable for some reason. Currently this is a phone call (or lots of them) and possibly fax machine. The internet, just like the WON, is always prone to equipment failure. It is also prone to hacker Denial of Service attack and other forms of attack, though the hacker groups typically go after political targets.

There are a couple of decisions that we still need to make however.

First, should we exchange straight ASCII/binary data that we specify on our own, or should we design XML schemas to describe the data objects? Both work, however XML has clear advantages over using ASCII/binary. The standards have already been worked out by the W3 Consortium for us. The consortium has spent several years working out the very issues that we would be working through if we invented our own ASCII/binary data file description. Most of the vendors are now well versed in XML and could take a schema we produce, combined with a communications protocol document, and produce an application to interface to our scheduling and EMS systems at a fairly low cost. There are a number of low cost tools that would help us design valid schemas. The construction of the XML documents themselves guarantees that they can be validated by many existing software systems. XML documents can be stored directly as a data type in both Sybase and ORACLE (and probably other databases as well now). XML documents stored directly can have all of their fields used just as columns in a database table can be used. XML documents can be easily verified by the human eye, viewed in a browser. The XML schema is a self documenting description of the data that we can all share for an unambiguous idea of what the documents will contain. XML schemas support much more complex object structures in an easy to see format than flat ASCII/binary files do.

Second, should we use ftp, http, https, or some other mechanism? Ftp is advantageous in that it is very straightforward however it quickly becomes unmanageable when the number of parties with whom you exchange data increases. Troubling also is that ftp doesn't guarantee delivery and doesn't directly tie into most software. Ftp doesn't allow you to immediately process data. With ftp you must rely on a periodic task to process files. This is acceptable in most situations involving periodic data exchange. Another problem with ftp is that there is no ftps, or secure sockets layer for ftp. So we would be backed into either using some platform specific and sequential encryption package or abandoning security issues. On the other hand, software that is relatively current contains built in function calls for http and https. Https allows cross-platform, secure, and instantaneous communications.

It seems like the best solution may be to use XML over http/https based on TCP/IP and allowing individual organizations to determine the physical medium(s) that best fit their needs. There are undoubtedly other issues that are not presented in this document.

� EMBED Visio.Drawing.5 ���

[image: image4.png][()

SamplePd 13nd 2

TERC 10 of Paty Sending
the Document

TERC 1D of nanded
Recaiver

btz

[FReadingbateTime

O DDTRRALS
H

Al o et Acusl)

This i 3n optonlfld

_1067767507.vsd
Sender�

Receiver�

Sender uses httpsget to send file to receiver and reads return code�

Sender�

Receiver�

Receiver uses httpsget to send acknowledgement message to sender and reads return code�

