

Possible impact of hydrological data on frequency response

Slaven Kincic, PNNL slaven.kincic@pnnl.gov SRS meeting, April 11th

PNNL is operated by Battelle for the U.S. Department of Energy

Context: TPL-008 Transmission System Planning Performance Requirements for Extreme **Temperature Events**

- Establish requirements for Transmission system planning performance for extreme heat and extreme cold temperature events
- Select one extreme heat benchmark event and extreme cold benchmark event for performing Extreme Temperature ۲ Assessments

1. Type of Extreme Temperature Assessment	1. Extreme Cold Temperature Event	1. Extreme Heat Temperature Event	1. Total
Benchmark	A minimum of one	A minimum of one	Total Minimum:
Planning Case	extreme cold temperature	extreme heat temperature	Two benchmark
Analysis	benchmark planning case	benchmark planning case	planning case
	assessment	assessment	assessments
Sensitivity Analysis	A minimum of one sensitivity study case for one of the following:	A minimum of one sensitivity study case for one of the following:	Total Minimum: Two sensitivity cases analysis
	1. Changes in generation availability, or	1. Changes in generation availability, or	
	2. Changes load level (real and reactive), or	2. Changes load level (real and reactive), or	
	3. Changes in transfer level	3. Changes in transfer level	
Total			A minimum total
			of four Extreme
			Temperature
			Assessments

Problem Statement

Hydro generation not adequately and inaccurately represented in planning and operation studies:

- Water availability not updated seasonally or modeled in basecases •
- No interdependencies between resources, environmental constraints ignored

The six-turbine Edward Hyatt Power Plant was taken offline after the water level in the Oroville Dam reservoir that feeds it sank to an historic low

As the river's biggest reservoirs, Lakes Powell and Mead, fall to one-third of their capacity, the dwindling flow threatens electricity generation.

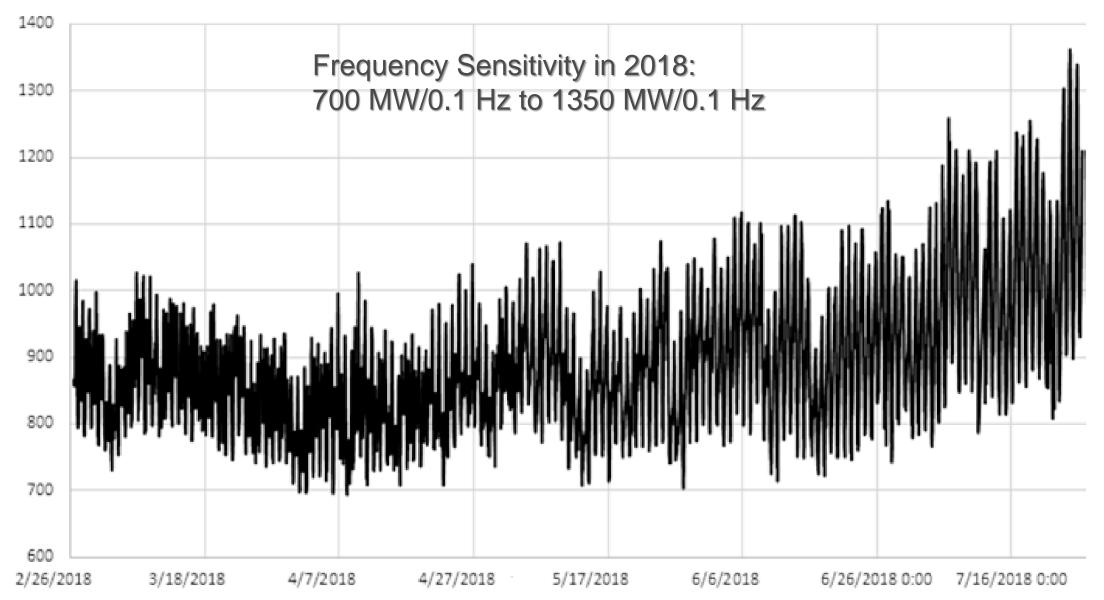
https://www.cnbc.com/2021/08/06/california-shuts-down-major-hydroelectric-plant-amid-severe-drought.html

https://insideclimatenews.org/news/08082021/colorado-river-water power/#:~:text=The%20Colorado%20River%20is%20tapped.government%20will%20de

NATIONAL LABORATORY

https://transmission.bpa.gov/business/operations/wind/twndbspt.aspx

Case Study-Wind Variability


BPA Balancing Authority Total Wind Generation, Base Schedule, Basepoint and Oversupply Mitigation, Last 7 days 28Dec2023 - 04Jan2024 (last updated 3Jan2024 07:30:30) WindBasepoint OvrsupplyMitigation WindBaseSched – Wind 1200 Saturday Sunday 1000 800 MΜ 600 400 200 Dec29 Dec30 Dec31 Jan01 Jan03 Jan04 Dec28 Jan02 Date/Time Based on 5-min readings from the BPA SCADA system for points 187517, 103349, 79687, 114476 Balancing Authority Wind Base Schedule in Red, Wind Basepoint in Green, Wind Generation in Blue, Oversupply Mitigation (value equaling how much we are reducing the wind generation in our BA) in Brown Click chart for installed capacity info BPA Technical Operations (TOT-OpInfo@bpa.gov)

Frequency Sensitivity (MW/0.1Hz)

Retirement of generation in WI

2019 Retirements			6581 MW		
Alamitos 1-6	NG	2010	CA	12/31/2020	
Boardman	Coal	550	OR	12/31/2020	
Centralia 1	Coal	670	WA	12/31/2020	
Huntington Beach 1,2 (Potential Delay)	NG	450	CA	12/31/2020	
Ormond Beach	NG	1491	CA	12/31/2020	
Nucla	Coal	100	CO	12/31/2020	
Redondo Beach (Potential Delay)	NG	1310	CA	12/31/2020	

2020 Retirement	367 MW		
Fort Churchill 2	NG	113	12/31/202
North Valmy 1	Coal	254	12/31/202

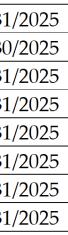
2021 Retirements			2762 MW		
Oakland	NG	165	CA	10/1/2022	
Comanche 1	Coal	330	CO	10/31/2022	
San Juan 1,4 (Potential Retirement)	Coal	847	NM	12/31/2022	
Naughton 1,2 (Potential Retirement)	Coal	357	WY	2022	
Jim Bridger 1,2 (Potential Retirement)	Coal	1063	WY	2022	

	1	1		
2024 Retirements	4242 MW			
Comanche 2	Coal	330	CO	10/31
Diablo Canyon 2	Uranium	1080	CA	11/30
Battle River 4	Coal	148	AB	12/31
Craig 1	Coal	427	CO	12/31
Fort Churchill 1	NG	113	NV	12/31
Harry Allen 1	NG	76	NV	12/31
Intermountain GS 1,2	Coal	1800	UT	12/31
North Valmy 2	Coal	268	NV	12/31

Total: 18,433 MW

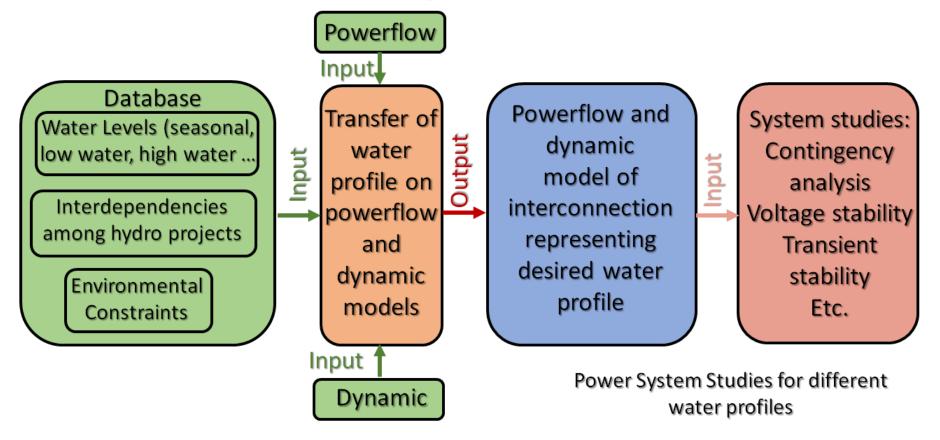
2019 Retirements		05		V
Alamitos 1-6	NG	2010	CA	12/31/2020
Boardman	Coal	550	OR	12/31/2020
Centralia 1	Coal	670	WA	12/31/2020
Huntington Beach 1,2 (Potential Delay)	NG	450	CA	12/31/2020
Ormond Beach	NG	1491	CA	12/31/2020
Nucla	Coal	100	CO	12/31/2020
Redondo Beach (Potential Delay)		1310	CA	12/31/2020

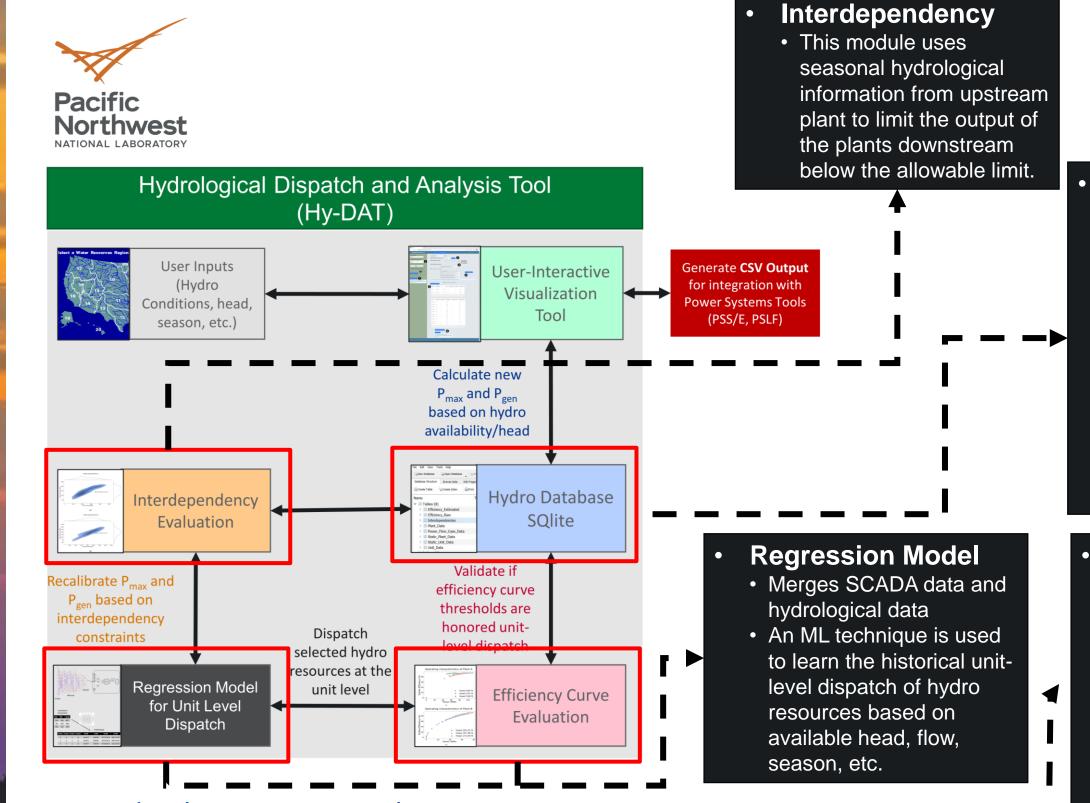
2022 Retirements			2710 MW			
Diablo Canyon 1	Uranium	1080) CA	11/30/2024		
Centralia 2	Coal	670	WA	12/31/2024		
Cholla 4	Coal	387	AZ	12/31/2024		
Newman 1-3	NG	247	ΤX	12/31/2024		
Scattergood 1,2	NG	326	CA	12/31/2024		


2025 Retirements	910 MW			
Battle River 5	Coal	148	AB	12/1/2027
Dave Johnston 1-4	Coal	762	WY	12/31/2027

2027 Retirements	871 MW			
Harmac Biomass	BIO	55	BC	8/12/2028
Sheerness 1,2	Coal	816	AB	12/31/2028

U.S. DEPARTMENT OF ENERGY





The software will update the existing steady state and dynamic model based on desired historical hydro conditions, allow modification while respecting interdependences and impose desired hydro profile, including dispatch constraints on hydro plants, as illustrated in Figure below:

Hosted online: Hy-Dat.pnnl.gov

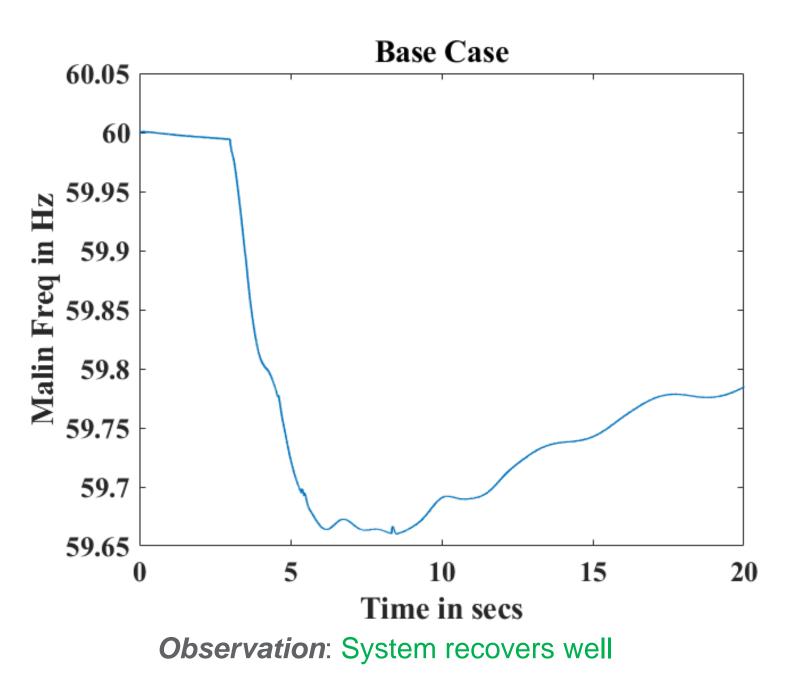
۲

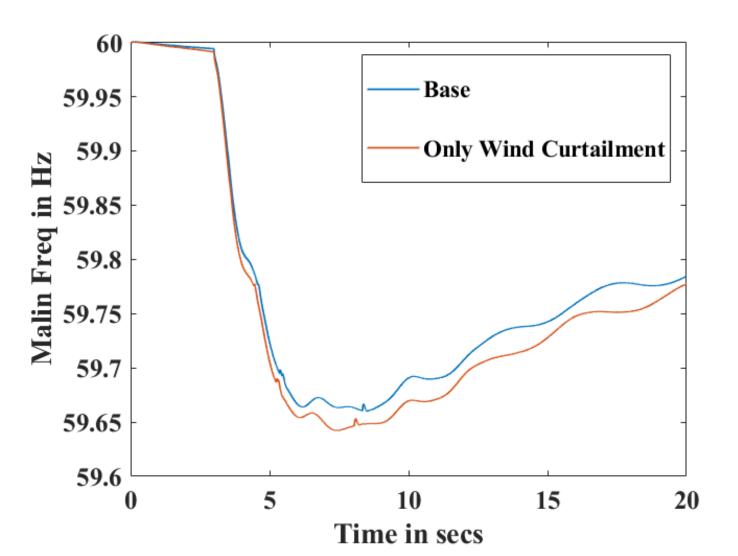
SQL based database

- Static Hydro data containing plant information like nominal head, turbine rating, # of units, etc.
- Historical Hydrology data containing plant head, flow, MW output, spillage, etc.
- SCADA output hydro unit level generation data from actual operations

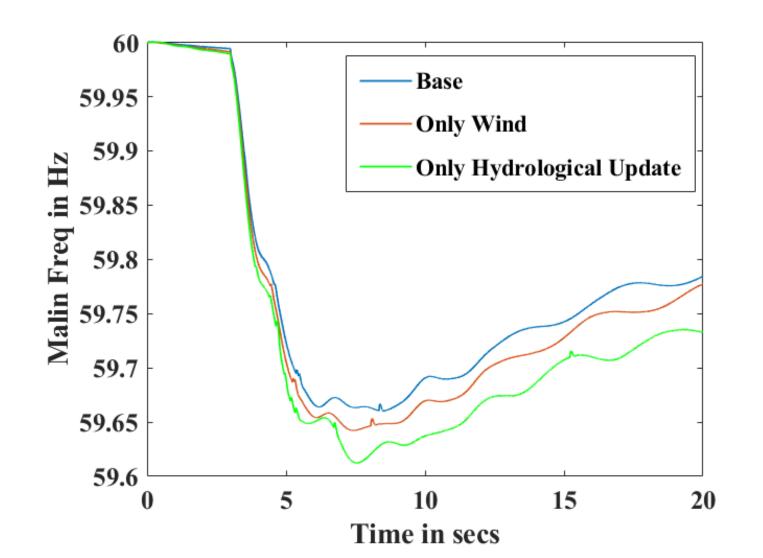
Efficiency Curve

- The tool uses historical hydrology data to generate a database for efficiency curves for various hydro units.
- This is used when dispatching an unit based on user inputs making sure efficiency threshold is met.


- 2022 Light Spring Case has been used as the base case
- Four scenarios have been simulated:
 - Scenario1: 'Base Case'
 - Scenario2: 'Only Wind Curtailment'
 - Scenario3: 'Only Hydro Update'
 - Scenario4: 'Wind Curtailment + Hydro update'
- Governor powerflow option in PSLF has been used to redispatch the changes in the generation made in the different scenarios considered using other resources throughout the system
- 'N-2' Palo Verde Trip Event has been simulated
- Wind units has been curtailed in the NORTHWEST area



- ٠ have been curtailed
- Wind units are only tripped in the • Northwest area (~1500 MW)
- curtailed.


20% of the total wind generation in the Northwest and California areas

The hydro units whose generation data needs to be updated based on the new hydrological data are not utilized in the governor powerflow dispatch when wind generation is

- curtailed
- updated.
 - 1 pu).

Observation: System recovers well similar to base case but has slightly lower nadir and much slower recovery rate compared to Scenario 1 and Scenario 2

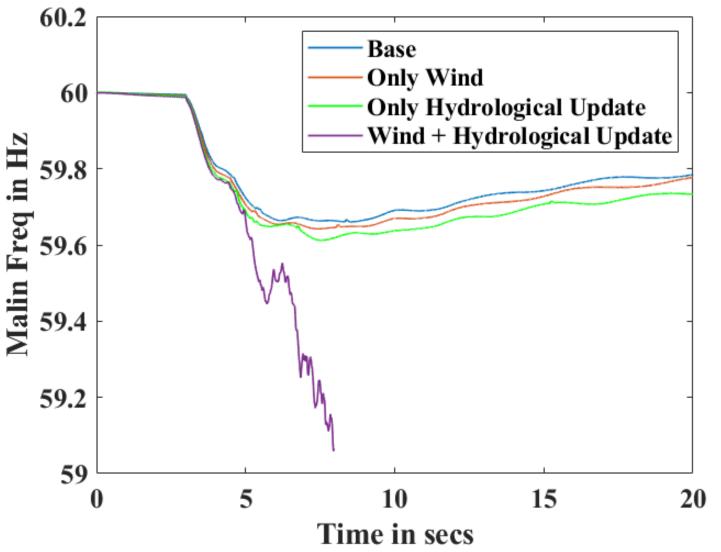
No wind generation has been

The Pgen, Pmin and Pmax of the hydrounits have been

updated based on the new hydrological data.

Total of 4720 MW have been

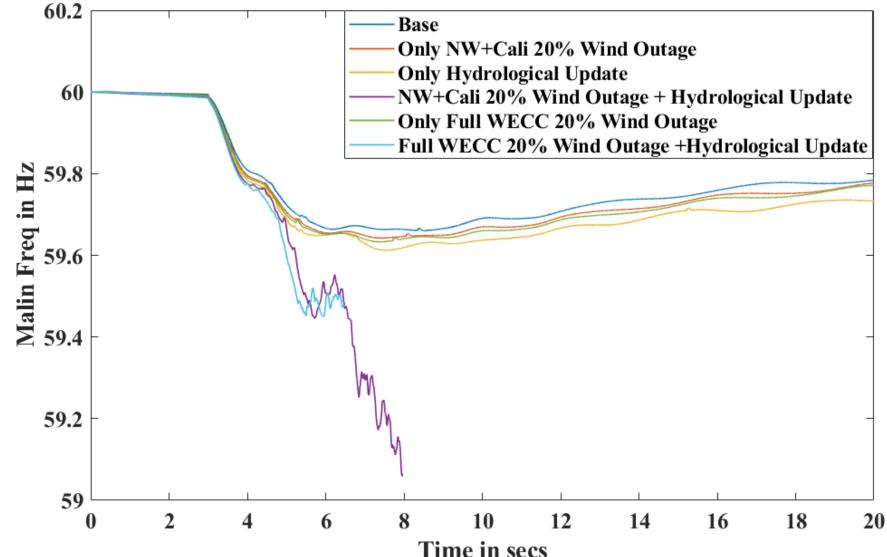
'Head' value in the


corresponding dynamic

governor models has been

updated to 0.75 pu (default is

• Scenario


It should be noted that these simulations have also been redone by implementing the governor powerflow redispatch considering only units whose baseload flag value is 0. Noticed almost same behavior, in the results, as shown before without considering baseload flag constraint.

Observation: System doesn't recover which clearly shows the importance of having an accurate reflection of the hydro units generation based on the hydrological data

Updates made in both Scenario 2 and Scenario 3 have been made in this

Scenario 6: Result Comparison (20% Wind Curtailment based on Full WECC wind generation + Hydrological update) with Scenarios 1-5

Observation: System response in this scenario is very similar (does not recover) to Scenario 4 (20% wind outage based on NW & Southern Cali wind generation areas + hydrological update)