

<Public>

WECC Short-Circuit Modeling Subcommittee Blackbox Modelling of Inverter-Based Resources

for Short-Circuit Analysis (Part of DOE DE-EE0010658 Project)

November 14, 2024

Mohammad Zadeh – ETAP, Irvine, CA, USA Matthew Reno – SANDIA National Labs, Albuquerque, NM, USA Ali Bidram – University of New Mexico, Albuquerque, NM, USA Mike Jensen – Pacific Gas & Electric Co, Fresno, CA, USA

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE0010658.

<Public>

AGENDA

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENC & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

DOE DE-EE0010658 Project

- Latest Update
- Result Comparison with EMT
- Lessons Learned
 - VRT Detection
 - VRT Injection
 - Angle Rotation for 3Ph Close-In Faults
 - Current Limits with I2 Injection
- Summary of Model Development
- Comparison of Aspen and PSCAD

Funded by:

U.S. OEFARTMENT OF CHICLE OF ENERGY EFFICIENC' & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

A Sensitivity-Driven Wide Area Protection (SWAP) Coordination Tool for High Penetration of Inverter Based Resources (IBRs) Pacific Gas & Electric Company (PG&E) Award # DE-EE00010658

Project Objectives

- **Objective 1:** Improve IBR models used in short circuit programs to accurately capture the response of IBR at the Bulk Power System (BPS) level for fault and protection studies.
- **Objective 2:** Develop an automation tool that allows engineers to identify protection coordination and sensitivity issues by performing short-circuit and protection coordination studies in an IBR-penetrated grid by applying variations to the IBR models, faults, contingencies, etc.
- **Objective 3:** Develop new protection mitigation solutions schemes that complements the existing protection systems to ensure safe operation of the BPS with higher IBR penetration levels. Protection systems will include different types of line, bus, and transformer protection schemes.

Funded by:

U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY

Team Members

Supporting Organizations

Mohammad Zadeh

veloper

Short-Circuit Software De

Inverter Manufacturer

Relay Manufacturer

Mike Jensen (PI) Ajmal Saeed

Electric Utility (Prime)

Taylor Raffield Huimin Li **Electric Utility**

QUANTA Amin Zamani

Omid Alizadeh

Consultant & Tool Developer

Mathew Reno **Consultant & National** Laboratory

Ali Bidram

THE UNIVERSITY OF NEW MEXICO.

University Partner

Funded by:

US. DEPARTMENT OF CHERCY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Key Milestones & Deliverables

This presentation may have proprietary information and is protected from public release.

Mike Jensen

SWAP Tool for IBRs

PG&E DE-EE0010658 Nov 14,2024

Funded by:

U.S. DEPARTMENT OF CONFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Funded by:

Solar Energy Technologies office

Utility Perspective

Modeling Challenges

- Fault simulation software vendors do not have a comprehensive IBR model.
 - The "Voltage Controlled Current Source" (VCCS) model has limitations.
- The current IBR models are removed when reducing the network
- Convergence issues with VCCS IBR models.
- It's difficult to get modeling data in a timely manner from manufacturers. Manufacturers may want to sign non-disclosure agreements (NDA) that take months to finalize.
- Time domain analysis (using EMTP and PSCAD) is not practical.
- Most of the utilities are still modeling IBRs as synchronous machines.

Funded by:

SOLAR ENERGY TECHNOLOGIES OFFICE

Mohammad

A Sensitivity-Driven Wide Area Protection (SWAP) Coordination Tool for High Penetration of Inverter Based Resources (IBRs) Pacific Gas & Electric Company (PG&E) Award # DE-EE00010658

- **DOE Project**
- Part of DOE project "Award Number DE-EE00010658"
 - Plan to develop SC Blackbox models for four vendors.
 - Three already completed.
- Modeling Approach
 - Use an agreed interface between ETAP and Aspen
 - Received PSCAD Blackbox models from three vendors so far
 - No detailed information provided by vendors about the control logic
 - Guess control logic related to short-circuit based on settings and EMT studies

Latest Updates

Modeling Approach

- Voltage Ride Through detection & injection logic
- Current limit logic especially in case of negative seq. injection
- Determine control strategy during angle rotation (closein 3ph fault)
- Determine control strategy for pre-fault (load flow)
 - PQ priority, QV Droop, Current Limit

Test Setup in ETAP

- Results are reported for default IBR settings
- Testing has been done for different settings
- Similar levels of error have been achieved.

Funded by:

Vendor 1

Errors for Close-in Faults

	V ₁ (%)	∠V ₁ (°)	<i>I</i> ₁ (%)	∠I ₁ (°)	V ₂ (%)	∠V₂ (°)	I ₂ (%)	∠I₂ (°)
3Ph	0.1		0.0					
LG	0.0	0.05	0.3	0.12	0.1	0.04	0.2	0.40
LLG	0.0	0.13	0.1	0.44	0.1	0.07	0.1	0.20
LL	0.1	0.02	0.3	0.33	0.0	0.09	0.2	0.34

Errors for Remote Faults

	$ V_1 $	$\angle V_1$	<i>I</i> ₁	$\angle I_1$	<i>V</i> ₂	$\angle V_2$	<i>I</i> ₂	∠ I ₂
	(%)	(°)	(%)	(°)	(%)	(°)	(%)	(°)
3Ph	0.0	0.07	0.0	0.16				
LG	0.1	0.06	0.2	0.0	0.0	0.35	0.1	0.38
LLG	0.1	0.14	0.1	0.18	0.0	0.03	0.1	0.61
LL	0.2	0.04	0.5	0.02	0.1	0.14	0.2	0.34

Max Error

- Mag: 0.3%
- Angle: 0.44°

Max Error

- Mag: 0.5%
- Angle: 0.61°

Vendor 2

PLL F	reeze		Error	s for C	Close-i	n Faul	ts		
		$ V_1 $	$\angle V_1$	<i>I</i> ₁	$\angle I_1$	$ V_2 $	$\angle V_2$	<i>I</i> ₂	$\angle I_2$
		(%)	(°)	(%)	(°)	(%)	(°)	(%)	(°)
	3Ph	0.3	7.34	2.2	7.82	0.1		1.1	
	LG	0.1	0.00	0.4	0.11	0.1	0.33	0.5	0.04
	LLG	0.4	0.14	1.7	0.61	0.2	0.04	0.6	0.30
	LL	0.05	0.05	0.4	0.74	0.1	0.14	0.7	0.38

Errors for Remote Faults

	V ₁ (%)	$\angle V_1$ (°)	<i>I</i> ₁ (%)	∠I ₁ (°)	$ V_2 $ (%)	$\angle V_2$ (°)	I ₂ (%)	∠I ₂ (°)
3Ph	0.5	0.12	1.2	1.15				
LG	0.1	0.05	0.3	0.12	0.2	0.01	0.7	0.47
LLG	0.3	0.16	1.4	0.48	0.1	0.11	0.6	0.27
LL	0.3	0.12	1.4	0.78	0.14	0.06	0.3	0.48

Max Error

- Mag: 2.2% , 1.7% (no PLL Freeze)
- Angle: 7.82°, 0.86°(no PLL Freeze)

Max Error

- Mag: 1.4% •
- Angle: 0.78° •

This presentation may have proprietary information and is protected from public release.

Funded by:

Vendor 3

Errors for Close-in Faults

	V ₁ (%)	∠V ₁ (°)	<i>I</i> ₁ (%)	∠ I 1 (°)	V ₂ (%)	∠ <i>V</i> 2 (°)	<i>I</i> ₂ (%)	∠ I 2 (°)
3Ph	0.1		1.0					
LG	0.3	0.84	1.4	1.01	0.3	0.56	1.1	0.76
LLG	0.4	0.03	1.6	0.22	0.1	0.11	0.2	0.09
LL	0.3	0.03	1.5	0.2	0.1	0.07	0.3	0.11

Errors for Remote Faults

	V ₁ (%)	∠V ₁ (°)	<i>I</i> ₁ (%)	∠ I 1 (°)	V ₂ (%)	∠V ₂ (°)	<i>I</i> ₂ (%)	∠ I ₂ (°)
3Ph	0.2	0.22	0.7	0.45				
LG	0.12	0.05	0.5	0.16	0.1	0.22	0.6	0.05
LLG	0.15	0.10	0.4	0.43	0.96	0.28	0.5	0.10
LL	0.1	0.04	0.4	0.40	0.0	0.24	0.9	0.09

Max Error

- Mag: 1.6%
- Angle: 1.01°

Max Error

- Mag: 0.96%
- Angle: 0.45°

Mohammad

Funded by: U.S. DEPARTMENT OF

ENERGY

Office of ENERGY EFFICIENCY

& RENEWABLE ENERG SOLAR ENERGY TECHNOLOGIES OFFICE

VRT Detection

- Vendor 1: Options for Positive seq. and Min Ph-Ph, Hysteresis •
- Vendor 2: Min Ph-Ph, Hysteresis •
- Vendor 3: Based on V_1 and V_2 , Single Threshold + Timer •

This presentation may have proprietary information and is protected from public release.

Lessons Learned

VRT Injection

- Vendor 1: Options for Positive seq. and Min Ph-Ph for I_{q1}
- Vendor 2: Positive seq. for I_{q1}.
- Vendors 1&2 : Option for ΔV_1 : V_{Nom} vs V_{Set}
- Vendor 3: Positive seq. for I_{q1}, deadband for I₂, The maximum possible power factor angle is 79.5° (not 90°), when sufficient active power is available.

Generic Model

Funded by:

Office of ENERGY EFFICIENC

Mohammad

Funded by:

U.S. OFFARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

VRT Injection

- I₂ injection is tied to VRT mode
 - Vendor 1: Independent
 - Vendors 2&3: Dependent
- Vendor 1&2: Negative seq. FRT curve passes through the origin.
- Vendor 3: Negative seq. FRT curve is continuous.
- Negative seq. transient is slow

Vendor 1, BCG

Vendor 2, BCG This presentation may have proprietary information and is protected from public release.

Mohammad

Funded by: U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

VRT Disabled Hysteresis

• In SC solver: Lock VRT mode after a preset iteration number.

Main : Graphs V pos m × 0.836 0 0.841 1.00 △ 0.005 Min 0.827 0.95 Max 0.855 0.90 Diff 0.029 0.85 0.80 Reactive Power (pu) ×-0.049 0.70 0.60 o -0.035 0.50 △ 0.014 0.40 Min -0.049 0.30 Max 0.416 0.20 Diff 0.465 0.10 0.00 -0.10 -0.20 6.06 2 6.08 6.10 6.04 6.12 × 6.07 Tim... 6.00 6.02 ° 6.09 + 65.25

Vendor 1

Vendor 2

Vendor 3

Funded by:

 $\angle V_1 - \angle I_1 = 79.5^{\circ}$

U.S. DEPARTMENT OF CONTINUE OF ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Angle Rotation for Close-in 3Ph fault

- IBR current impacts its own voltage
- IBR ∠V₁ ∠I₁ = 90° While V₁ = Z_{loop}× I₁ & ∠Z_{loop} < 90°, IBR reference angle will rotate.

Current Limit with I₂ Injection

- Vendor 1: I₂ Priority
- Vendor 2: Three options: I₁, I₂, Proportional, default is Proportional
- Vendor 3: Proportional, it keeps I_{d1} such that positive sequence power factor angle = 79.5°
- IEEE 2800-2022

Assuming pre-fault negative sequence current output is zero or negligible, the negative sequence reactive current injection during a fault is an incremental negative sequence reactive current (Δ IR-2). If the *IBR unit*'s total current limit is reached, either Δ IR-1, or Δ IR-2, or both may be reduced with a preference of equal reduction in both currents. Additionally, the incremental positive-sequence reactive current (Δ IR-1) injection shall not be reduced below incremental negative sequence reactive current (Δ IR-2). In case of type III WTGs, the Δ IR-1 and Δ IR-2 injection during a fault is driven by machine parameters and control dynamics and may not be controllable in a manner described above.

- In certain cases, I_{d1} injection can help to reduce the total current, maximizing IBR active & reactive power support.
- It is not completely clear how vendors have implemented the current limiter in case of unbalanced faults.

Funded by: Solar ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY FECHNOLOGIES OFFICE

Summary

- Blackbox modelling for SC analysis is a possible solution.
- Accuracy can be acceptable even without having vendor control diagrams.
- Is an NDA required to share a vendor Blackbox model for SC analysis?
- Differences in VRT detection and injection logics.
- Angle rotation is not addressed in control logics of most vendors.
- Current limitation logic during unbalanced faults is not clear.

Funded by: U.S. DEPARTMENT OF CONFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

The three vendor models were compared with PSCAD and the Aspen DLL model.

• Details of Vendor 1 are shown as a representative example

Single Line used for the Aspen model comparisons.

Funded by:

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Aspen CIR/DLL Model Configuration

At b	ous 0 PVInv1	Fer 0.66k	v		
Number of units=	1		Advance	d Settings	
Unit MVA rating=	42.		FLC		
Power Flow					
Unit MW = 25.2	MVAR=	1.6	V set po	int (pu) =	0.
(MW,MVAR >0 for gen	eration, <0 f	or consu	mption; V	=0 for PQ	regulation)
Maximum current (in multi	ple of full-lo	ad <mark>c</mark> urre	nt)		
When + seq V (pu) >	0.5	М	ax current	1.	pu
	Other	wise, Ma	x current	= 1.	pu
Control Method					
ETAP: Vendor1					-
CTUAL AUTOMOTION CONTRACTOR					
Model GUID: {710892de-8	d55-4416-b4	e3-1b9a	38a1613}		
Model GUID: {710892de-8	d55-4416-b4	e3-1b9a	38a1613}		
Model GUID: {710892de-8	d55-4416-b4	e3-1b9a:	338a1613}		
Model GUID: {710892de-8/ 4emo Fags=None In-service date	=N/A Out-of	e3-1b9a	date=N/A	*	
Model GUID: {710892de-8 4emo Fags=None In-service date	=N/A Out-of	e3-1b9a	date=N/A	*	74 <u>14</u>
Model GUID: {710892de-8 Memo Tags=None In-service date	d55-4416-b4 =N/A Out-of	e3-1b9ai	date=N/A	A	

Configuration	Default	
	Parameter	Value
Upper shut-down	voltage threshold (p.u)	1.2
Lower shut-down	voltage threshold (p.u)	0.
Normal mode PQ	priority [0:P, 1:Q]	0
Q set total load flo	w (Mvar)	1.6
VRT mode: [0:no l	P, 5:P priority, 6:Q priority]	6
VRT dVmode: [0:\	/nom, 1:VRT Vmin]	1
Slope of +seq rea	ctive current LVRT	2.0
Slope of +seq rea	ctive current HVRT	2.0
Slope of -seq read	tive current inj.	2.0
VRT detection thre	eshold [0:Vpos, 1:VLLmin]	1
VRT injection thre	shold [0:Vpos, 1:VLLmin]	1
VRT Vmin (%)		85
VRT Vmax (%)		115

Prefault Voltage	Ignore in Short Circuits			
C Assumed "Flat" with	Loads			
V (pu)= 1.	Transmission line G+jB			
C From a linear network solution	Shunts with + seq values			
From a Power Flow solution	Transformer line shunts			
Generator Impedance	MOV-Protected Series Capacitors			
Subtransient 💌	T Iterate short circuit solution			
Define Fault MVA As Product of	Acceleration factor= 0.4			
Current & prefault voltage	Ignore generator current limits			
Ignore Mutuals < This Threshold	Simulate voltage-controlled current sources (VCCS) Simulate converter-interfaced resources			
Do not change display quantity when browsing fault results	(CIR) Simulate type-3 wind plants Iterative Solution Convergence Tolerance Level			
Include outaged branches in solution summary in TTY Window	Default			

Preferences

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Vendor 1 System Configuration

Network elements	Parameters
Inverter	Voltage rating = 660 V (line-line)
	MVA rating = 42 MVA
	Active power set = 25.2 MW
	Reactive power set = 1.6 MVAR
	Voltage rating = 0.66/33 kV
D)/Vfrm (2) W/dg transformer)	Winding connection = YG/D
PVAITIII (2-Wug transformer)	Base MVA = 42 MVA
	Impedance = 0+j0.08 pu
PVCable	Impedance = $0.001 + j0.0314 \Omega$
	Voltage rating = 33/132/33 kV
	Winding connection = YG/D/YG
	MVA rating: 42/84/42
GridXfrm (3-Wdg transformer)	Base MVA for impedance calculation = 84 MVA
	Impedance between primary and secondary windings = 0+j0.06 pu
	Impedance between secondary and tertiary windings = 0+j0.06 pu
	Impedance between tertiary and primary windings = 0+j0.06 pu
Utility (modeled as the combination of an ideal	Voltage rating = 132 kV (line-line)
voltage source in series with an impedance	$Z^{(1)} = 21.865 + j65.595 \Omega$
denoted as gridZ)	$Z^{(0)} = 21.865 + j65.595 \Omega$

Vendor 1 Fixed Settings

K-factor for positive sequence LVRT	2
K-factor for positive sequence HVRT	2
K-factor for negative sequence	2
LVRT threshold voltage	85%
HVRT threshold voltage	115%
Hysteresis	5%
Voltage deviation reference	VRT Vmin
Current limit	%100
Current limit priority	-ve sequence

Funded by:

Power flow results validation

 The power flow voltage and currents at the inverter terminal are compared with PSCAD results which is shown below.

	V (pu)	$\angle V(^{\circ})$	I (pu)	∠I(°)
PSCAD	1.0285	-51.09	0.586	-54.8
ASPEN	1.029	-51.1	0.584	-54.71
Error	0.05%	0.02%	-0.34%	-0.16%

Load flow results validation for vendor 1

This presentation may have proprietary information and is protected from public release.

Funded by:

Results: Comparison of PSCAD and IBR SC Models in Aspen

U.S. DEPARTMENT OF CHICLE OF CHERCY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

FRT Settings for Vendor 1

Settings	Default Value	Description
Normal mode PQ priority [0:P, 1:Q]	0	The priority of active power or reactive power during the normal power flow.
VRT mode [0: no P, 5:P priority, 6:Q priority]	6	The vendor has 7 modes of current injection during VRT. Mode 0: $I = 0 + jk * dV$ Mode 5: $I = P_{prev} + j(I_{qprev} + k * dV)$; with P-priority Mode 6: $I = P_{prev} + j(I_{qprev} + k * dV)$; With Q-priority (note*: VRT modes 1,2,3 and 4 are not implemented in the dll. If one of these options are chosen, the default mode 6 will be used.)
VRT dVmode: [0:Vnom, 1:VRT Vmin]	1	This setting determines if the VRT curve passes through the origin or is continuous. Option 0 = Voltage reference for reactive current injection is nominal (1 pu) value. Option 1 = Voltage reference for reactive current injection is minimum VRT voltage threshold (eg. 0.85 pu).
Slope of +seq reactive current LVRT	2	K-factor for the positive sequence reactive current injection during LVRT.
Slope of +seq reactive current HVRT	2	K-factor for the positive sequence reactive current injection during HVRT.
Slope of -seq reactive current inj	1	K-factor for the negative sequence reactive current injection.
VRT detection threshold [0:Vpos, 1:VLLmin]	0	VRT mode is determined based on two options: 1) Positive sequence voltage < VRT threshold 2) Minimum line-line voltage < VRT threshold
VRT injection threshold [0:Vpos, 1:VLLmin]	0	The positive sequence reactive current injection is based on the deviation of (1). Positive sequence voltage, or (2). Minimum line-line voltage from the reference voltage used in VRT dVmode setting.
VRT Vmin (%)	85	Voltage threshold below which LVRT mode is ON.
VRT Vmax (%)	115	Voltage threshold above which HVRT mode is ON.
LVRT Hyst (%)	5	Hysteresis voltage in LVRT
HVRT Hyst (%)	5	Hysteresis voltage in HVRT
Use V1Ang-preF [If V1Mag<](%)	20	If inverter terminal voltage is less than this threshold, the phase angle of pre-fault voltage is used.

This presentation may have proprietary information and is protected from public release.

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Fault Study Cases for Vendor 1

Case#	Fault information	LVRT setting
1	3Ph fault @bus: POI	Mode 0
	$Z_f = 3.16 + j9.48 \Omega$	
2	3Ph fault @bus: POI	Mode 5
	$Z_f = 9.48 + j28.44 \Omega$	
3	3Ph fault @bus: POI	Mode 6
	$Z_f = 31.62 + j94.87 \Omega$	
4	AG fault @bus: POI	VRT detection and injection based on
	$Z_f = 0.0 + j0.0 \ \Omega$	Vpos; and VRT mode 0
5	AG fault @bus: POI	VRT detection and injection based on
	$Z_f = 0.0 + j0.0 \ \Omega$	Vpos; and VRT mode 5
6	AG fault @bus: POI	VRT detection and injection based on
	$Z_f = 15.8 + j47.44 \Omega$	Vpos; and VRT mode 6
7	AG fault @bus: POI	VRT detection and injection based on
	$Z_f = 0.0 + j0.0 \ \Omega$	VLLmin; and VRT mode 6
8	BCG fault @bus: POI	VRT detection and injection based on
	$Z_f = 0.0 + j0.0 \ \Omega$	Vpos; and VRT mode 6
9	BCG fault @bus: POI	VRT detection and injection based on
	$Z_f = 15.8 + j47.44 \Omega$	VLLmin; and VRT mode 6
10	BC fault @bus: POI	VRT detection and injection based on
	$Z_f = 0.0 + j0.0 \ \Omega$	Vpos; and VRT mode 6
11	BC fault @bus: POI	VRT detection and injection based on
	$Z_f = 7.9 + j47.44 \Omega$	VLLmin; and VRT mode 6

 $*Z_{f}$ is modelled on the line behind the Fault Bus

This presentation may have proprietary information and is protected from public release.

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

r	i	177 1		1.7.1		177			
Case		$ V_1 $	$\angle V_1$	<i>I</i> ₁	$\angle I_1$	V ₂	$\angle V_2$	<i>I</i> ₂	$\angle I_2$
		(pu)	(°)	(pu)	(°)	(pu)	(°)	(pu)	(°)
1	PSCAD	0.257	-63.06	1	-153.07				
	ASPEN	0.257	-62	1	-151				
2	PSCAD	0.272	-28.25	1	-27.632				
	ASPEN	0.276	-28	1	-29				
2	PSCAD	0.673	-43.26	0.972	-66.8				
5	ASPEN	0.674	-43	0.97	-67				
4	PSCAD	0.705	-60.23	0.295	-150.11	0.243	-117.93	0.486	-28.37
4	ASPEN	0.704	-60	0.29	-150	0.244	-118	0.48	-28
5	PSCAD	0.717	-50.09	0.618	-80.366	0.248	-112.74	0.496	-23.25
3	ASPEN	0.71	-50	0.62	-79	0.248	-113	0.49	-23
C	PSCAD	0.829	-47.86	0.726	-53.83	0.135	-109.99	0.27	-20.48
0	ASPEN	0.829	-48	0.73	-54	0.135	-110	0.27	-20
7	PSCAD	0.745	-53.96	0.565	-105.38	0.252	-114.86	0.504	-25.36
/	ASPEN	0.744	-54	0.56	-104	0.252	-115	0.5	-25
0	PSCAD	0.404	-60.186	0.606	-150.28	0.275	59.91	0.55	149.52
0	ASPEN	0.403	-60	0.6	-149	0.275	60	0.55	150
0	PSCAD	0.733	-53.18	0.713	-106.81	0.151	65.312	0.303	154.83
9	ASPEN	0.731	-53	0.72	-105	0.151	66	0.3	157
10	PSCAD	0.51	-58.82	0.37	-149.13	0.383	61.288	0.767	150.85
10	ASPEN	0.509	-59	0.36	-148	0.384	61	0.76	151
11	PSCAD	0.817	-55.163	0.6	-123.52	0.224	59.88	0.449	149.4
11	ASPEN	0.815	-55	0.6	-123	0.225	60	0.45	150

Fault Study Case Results for Vendor 1

Fault Study Case Percentage Comparison Vendor 1

Case	$ V_1 $	$\angle V_1$	$ I_1 $	$\angle I_1$	$ V_2 $	$\angle V_2$	<i>I</i> ₂	$\angle I_2$
	(%)	(°)	(%)	(°)	(%)	(°)	(%)	(°)
1	0.00	1.06	0.00	2.07				
2	0.40	0.25	0.00	-1.37				
3	0.10	0.26	-0.20	-0.20				
4	-0.10	0.23	-0.50	0.11	0.10	-0.07	-0.60	0.37
5	-0.70	0.09	0.20	1.37	0.00	-0.26	-0.60	0.25
6	0.00	-0.14	0.40	-0.17	0.00	-0.01	0.00	0.48
7	-0.10	-0.04	-0.50	1.38	0.00	-0.14	-0.40	0.36
8	-0.10	0.19	-0.60	1.28	0.00	0.09	0.00	0.48
9	-0.20	0.18	0.70	1.81	0.00	0.69	-0.30	2.17
10	-0.10	-0.18	-1.00	1.13	0.10	-0.29	-0.70	0.15
11	-0.20	0.16	0.00	0.52	0.10	0.12	0.10	0.60

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Fault Study Case Percentage Comparison Vendor 2

Case	$ V_1 $	$\angle V_1$	$ I_1 $	$\angle I_1$	$ V_2 $	$\angle V_2$	<i>I</i> ₂	$\angle I_2$
	(%)	(°)	(%)	(°)	(%)	(°)	(%)	(°)
1	-0.30	-0.05	-1.00	0.63				
2	-0.30	0.16	-1.10	1.19				
3	0.30	-0.49	-0.90	-1.58				
4	-0.50	1.00	-1.80	1.03				
5	-0.20	-0.39	-2.00	0.52	0.40	-0.36	-2.80	-0.42
6	-0.40	-0.12	-3.20	-0.22	0.20	-0.10	-2.40	-0.13
7	-0.30	0.30	-2.70	0.21	0.30	0.33	-2.70	0.29
8	0.00	0.42	1.30	0.94	0.60	0.20	-2.80	0.74
9	0.70	-0.98	-1.80	-4.01	0.00	-0.57	0.00	-0.22
10	-0.30	0.30	-1.20	0.86	0.20	-0.64	-0.80	-0.26
11	-0.60	0.42	-2.80	0.84	-0.60	-0.29	2.40	1.53
12	-0.10	-0.04	-1.00	1.40	0.00	0.15	-0.40	0.83
13	-0.30	0.14	-2.00	1.57	-0.20	0.36	0.90	1.10
14	-0.50	-0.68	-2.10	-0.03	-0.70	0.93	1.60	1.50
15	0.20	-1.13	-0.10	0.56	0.10	0.42	-0.80	0.95
16	-0.20	-0.86	-1.80	0.80	-0.40	0.73	0.50	1.27

Fault Study Case Percentage Comparison Vendor 3

Case	$ V_1 $	$\angle V_1$	$ I_1 $	$\angle I_1$	$ V_2 $	$\angle V_2$	<i>I</i> ₂	$\angle I_2$
	(%)	(°)	(%)	(°)	(%)	(°)	(%)	(°)
1	0.40	1.49	0.20	1.87				
2	0.00	0.46	0.20	0.20				
3	-0.20	-0.89	-1.30	0.24	-0.40	0.88	0.90	1.08
4	-0.10	0.02	0.80	0.34	0.00	0.20	0.10	0.37
5	-0.30	0.19	-1.80	1.30	-0.10	0.26	-0.10	0.46
6	0.00	-0.14	-0.10	0.63	-0.10	0.00	0.70	0.18
7	-0.30	0.16	-1.30	1.30	-0.80	0.18	0.10	0.36
8	0.00	0.57	0.50	0.56	-0.10	0.31	0.50	0.48

Funded by:

Questions?