VHVDC3 Model

WECC MVS Meeting 05/24/24

Parag Mitra (EPRI) Pouyan Pourbeik (PEACE®)

 www.epri.com
 © 2023 Electric Power Research Institute, Inc. All rights reserved.

New VSC HVDC model development - VHVDCx

GFM control on converter with active power control

GFL control on converter with active power control

Chopper circuit

GFL reactive power control

Active and reactive power limiters

Voltage dependent active power limiter

D-curve based reactive current limits

if I > Imax

$$Id_{lim} = \frac{Id \times Imax}{\sqrt{Id^2 + Iq^2}}, and$$
$$Iq_{lim} = \frac{Iq \times Imax}{\sqrt{Id^2 + Iq^2}}$$

Grid forming current limits

Fault close to HVDC terminal of the embedded HVDC (GFL/GFL)

T (sec)

Fault close to HVDC terminal for non-embedded HVDC (GFL/GFL)

T (sec)

Loss of last synchronous generation in remote system with HVDC (GFM/GFL)

Offshore wind with HVDC (GFM/GFL) inverter side fault

Offshore wind with HVDC (GFM/GFL) inverter side fault

Open Items

- Current limiter for GFM mode of operations: Need to finalize whether we use circular limiter, virtual impedance or D-curve similar to GFL
- Dc chopper: Chopper has been implemented but an energy dissipationbased tripping is not yet implemented
- VSCDC1 issues with current clamping to 0 during HVDC blocking in the absence of at least one classical generator model needs to be addressed

Together...Shaping the Future of Energy®