

GENQEC model benchmark 2023

Mengxi Chen (mengxi.chen@ge.com)

<Public>

Saturation in GENQEC Model

• Saturation:

$$\begin{split} V_{rag} &= V_{rterm} + I_{rterm} Ra - X_l I_{iterm} \\ V_{irag} &= V_{iterm} + I_{iterm} Ra + X_l I_{rterm} \\ \psi_{ag} &= \frac{\sqrt{V_{rag}^2 + V_{iag}^2}}{\omega} \end{split}$$

$$Sa = Sat(\psi_{ag})$$
 (Saturation function)

• Saturated impedances:

$$X_{dsat}^{\prime\prime} = \frac{X_d^{\prime\prime} - X_l}{1 + \mathbf{S}_a} \qquad X_{qsat}^{\prime\prime} = \frac{X_q^{\prime\prime} - X_l}{1 + \mathbf{S}_a}$$

q-AXIS

Initialization of the GENQEC Model

- During initialization, generator impedance is calculated based on Lppd, Lppq, Ll and Ra input by the users, and then fed into the gens table (gens[].zgenr and gens[].zgenx) in PSLF for network solution calculation.
- The resistance and reactance input by users are unsaturated value.
- Gens[].zgenr and gens[].zgenx are unchanged during dynamic simulation even when there is saturation.

This caused inaccuracy in the PSLF simulation during abnormal operating conditions when saturation exists.

• Fix

Adjust the injection current to compensate for the saturated impedances change in gengec model

gens	casepar[0].ngen	Generator Data Record
t stamp		time stamp
ibgen	i	Generator terr
id[2]		Generator iden
projid		Project Identif
st		Generator stat
stn		Normal status
cont mode		Voltage contro
igreg	i	Index of bus r
area	e	Area number
zone	e	Zone number
mbase		Generator MV
pgen		Actual real po
qgen		Actual reactiv
qmax		Maximum rea
qmin		Minimum read
pf		Power factor 1
qtab		Qtable selecto
qtabno	e	Qtable numbe
qmx		Actual max. Q
qmn		Actual min. Q
prf		Real power re
qrf		Reactive powe
pmax		Maximum pov
pmin		Minimum pov
zgenr		Generator cha
ZGODY		Constant cha

time stamp		
Generator terminal bus index		
Generator identifier		
Project Identifier		
Generator status		
Normal status		
Voltage control mode		
Index of bus regulated by this generator		
Area number		
Zone number		
Generator MVA base	1	MVA
Actual real power output	1	MW
Actual reactive power output	1	MVAr
Maximum reactive power limit	1	MVAr
Minimum reactive power limit	1	MVAr
Power factor limit		
Qtable selector: 1 – use qtable if it exists		
Qtable number		
Actual max. Q (from qtable, qmax, or pf)	1	MVAr
Actual min. Q (from qtable, qmin, or pf)	1	MVAr
Real power regulating assignment factor	1	per unit
Reactive power regulating assignment factor	1	per unit
Maximum power output	1	MW
Minimum power output	1	MW
Generator characteristic resistance	1	per unit
Generator characteristic reactance	I	per unit
Compensating resistance (+ values looks into system,		
Compensating reactance - values looks into gen.)		

Pa	ra	m	e	te	rs	:

EPCL Variable	Default Data	Description
Tpdo	7.0	D-axis transient rotor time constant, sec.
Tppdo	0.030	D-axis sub-transient rotor time constant, sec.
Tpqo	0.75	Q-axis transient rotor time constant, sec.
Tppqo	0.05	Q-axis sub-transient rotor time constant, sec.
H	3.0	Inertia constant, sec.
D	0.0	Damping factor, p.u.
Ld	2.1	D-axis synchronous reactance, p.u.
Lq	2.0	Q-axis synchronous reactance, p.u.
Lpd	0.2	D-axis transient reactance, p.u.
Lpq	0.5	Q-axis transient reactance, p.u.
Lppd	0.18	D-axis sub-transient reactance, p.u.
Lppq	0.10	Q-axis sub-transient reactance, p.u.
Ll	0.15	Stator leakage reactance, p.u.
S1	0.05	Saturation factor at 1 p.u. flux
S12	0.3	Saturation factor at 1.2 p.u. flux
Ra	0.0	Stator resistance, p.u.
Rcomp	0.0	Compounding resistance for voltage control, p.u.
Xcomp	0.0	Compounding reactance for voltage control, p.u.
Kw	0.0	Rotor field current compensation factor [1]. $0 \le Kw \le 1$
Satflg	0.0	Saturation type selector.
-		Satflg = -1 : No saturation (i.e., Sa = 0).

Benchmark Test

Benchmark Test

q-AXIS

• Variable compared between three software (PSSE, PowerWorld, PSLF):

 $E'q, \psi'_d, E'_d, \psi'_q, E_{fd}, I_{fd}, \omega$ (speed), V_t (terminal voltage)

Benchmark Test Results

• Case 1

Benchmark Test Results

Case 2

Fixed Version

- This issue was fixed in GE PSLF version 23.2.7 released December 2023.
- Thanks a lot for your support!