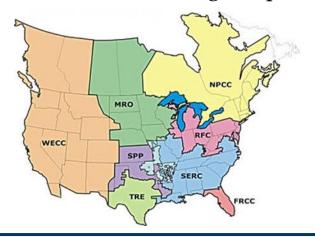


PCDS

November 8, 2023

Jon Jensen and Arkadeep Das WECC

Forced Outage Rates


Forced Outage Rates

Description:

• The forced outage rates represent the percentage of the year that a thermal generator is offline for unplanned outages. The forced outage rates are developed from the Generator Availability Data System (GADS) and are represented as a percentage of time each component will be offline. The point in time at which the component is forced offline during each simulation is random and based on a seed, or number in GridView.

Data Sources:

Generator Availability Data Set (GADS) using the pc-GAR program from NERC.

Forced Outage Rates

- Data Development and Validation Process:
- Data from GADS is collected from pc-GAR software. GADS data is considered confidential information at a unit level or even a regional level. Pc-GAR will provide the yearly statistics only if the following rules are followed to mask unit, utility, or regional level data:
 - A minimum of two regions, i.e., WECC and SERC;
 - A minimum of seven units; and
 - A minimum of three utilities.
- The Equivalent Forced Outage Rate demand (EFORd) statistic is used in the PCM for the forced outage rate. The simple average was used for gas turbines, combined cycles, and steam-coal turbines. For steam-gas turbines, the median was used.
- GridView then randomly forces out each thermal generator according to its seed and Monte-Carlo simulation.

Criteria for querying GADS Data

- pc-GAR-PG used to calculate the annual unit statistics
- Criteria used is as follows:
 - Average of 2017-2019 (2030 ADS) (latest 3 years 2021-2023) data latest 3 years 2021-2023
 - o (recommendation to use 10 years for PC-Gar)
 - o MAVRIC uses last 10 years
 - Minimum of two regions were required
 - Used WECC and TRE
 - Unit age was not considered

GADS Data for Outage Rates (Units that had Events All Three Years)

Generator type	Max Cap (MW)		" T.T. *	Equiv.	EFOR 1	Availability
	From	То	# Units	Scheduled Outage Factor	EFORd	Factor
Combustion Turbine	0	50	137	6.76%	7.60%	86.15%
	51	150	168	7.38%	7.95%	85.26%
	151	2,000	11	5.34%	2.63%	92.17%
Combined Cycle Block	0	225	25	7.81%	7.22%	85.53%
	226	2,000	16	6.21%	6.43%	87.76%
CC GT Part	All	All	205	10.64%	4.06%	85.73%
CC Steam Part	All	All	103	10.86%	5.19%	84.51%
Steam-Coal	0	150	Insufficient Utilities			
	151	400	26	7.70%	6.72%	86.10%
	401	5,000	38	8.23%	7.79%	84.62%
Steam-Gas	All	All	11	12.61%	15.71%	73.66%

Coal and Gas

- Coal
 - Use American Transmission Company coal outage rates from CEMS data (2002-2015)-This is what we have used previously
 - Or we can also create this in PC-GAR
- Gas
 - For gas generators, use GADS EFORd

Nomograms

Known Nomograms

- TEP generation will meet 32% or greater of its local load.
 - "TEP does not have an official nomogram. I think we set something up several years ago to cover a local gen requirement with higher loads. Since we plan at peak with most of our local gen on, you can ignore this in the development of the ADS."
- EPE generation will meet 85% or greater of its local load.
 - Haven't heard anything yet
- Path 8
 - Haven't heard anything yet

Other nomograms in Nomograms in PRC

- Lots of paths refer to nomograms (about 15)
 - Did not include RAS or real time nomograms
 - Some have more details than others
- Paths with mentioned nomograms include: Path 15, 17, 19, 20, 28, 29, 32, 65, 66, 76, 80, 81, 84, 85

Path Definitions/Ratings

- Still checking path definitions and ratings for WECC Paths
- Do we still want the non WECC paths in the case. Review as PCD
 - P WECC Paths
 - Pth Non WECC PAths

Next meeting

- Wheeling Rates (from Utility Tariffs)
 - OASIS, OATI, OATT
 - Save documents for each BA

Outstanding Items

- V1_Transmission Contingencies
- V1_Phase Shifter Transformers Reviewing in 2032 ADS V2.4.2
- V1_Hourly Utility Scale Wind and Solar shapes Reviewing in 2032 ADS V2.4.2
- Heat Rates
- FOR
- Path Ratings
- Transmission nomograms in Path Rating Catalog
- EPE and TEPC load and generation balance nomograms
- Wheeling Rates

www.wecc.org