

Modeling of Electronic Loads for Planning Studies

L. Sundaresh P. Mitra

WECC MVS Meeting Sep 12th 2024

in X f www.epri.com © 2024 Electric Power Research Institute, Inc. All rights reserved.

New Electric Loads in Power Systems

This Photo by U

Crypto Mining

Few kW to ~1000s MW

Hydrogen Electrolyzers

Data Centers

Few kW to ~1000s MW

Up to 50 MW

EV charger technologies

- Currently, EV chargers make up 1% of the total load and in the future are expected to rise to 30%¹.
- Wide variety of EV chargers in market with different characteristics
- Understand the key differences in their responses
- Identify relevant characteristics that need to be captured in transmission planning studies

Chargers	I/p voltage	Power range	Location
Level 1	120V (1Φ)	~2.6kW	Residential
Level 2	240V (1Φ)	~7.4kW	Commercial
Level 3	480V (3Φ)	60-350 kW	Charging hubs

Improve modeling of EV chargers through test results and comparison with electromagnetic transient (EMT) models

1. https://www.nerc.com/comm/RSTC_Reliability_Guidelines/NERC_Potential_Bulk_Power_System_Impact_of_Vehicle_Chargers_2024.pdf

EV charger test results (2021)

- A voltage dip of 50% for 9-cycles was applied and the responses were recorded
- The three key responses observed were:
 - The charger remained connected
 - The charger disconnected and did not reconnect
 - The charger disconnected temporarily and reconnected with a ramp after a time delay

1. Tuffner, Francis K., Undrill, John, Scoffield, Don, Eto, Joseph H., Kosterev, Dmitry, and Quint, Ryan D. Distribution-Level Impacts of Plug-in Electric Vehicle Charging on the Transmission System during Fault Conditions. United States: N. p., 2021. Web. doi:10.2172/1832905.

EPCI

Key feature needed: User defined cease/ reconnect response

Level 2 Charger Test Set Up

Ride-through responses

EPRI

EV Truck 1

Disconnected & manually reconnect Zero power with ramped reconnect Reduced power with ramped reconnect

Fast transient

Ramped reconnect with time delay

Charger 1							Charger	2		Charger 3				
	3 cycles	5 cycles	10 cycles	15 cycles		3 cycles	5 cycles	10 cycles	15 cycles		3 cycles	5 cycles	10 cycles	15 cycles
20%					20%					20%				
30%					30%					30%				
40%					40%					40%				
50%					50%					50%				
60%					60%					60%				

EV Truck 2

Disconnected Manually reconnect Zero power with ramped reconnect Reduced power with ramped reconnect

Fast transient

Ramped reconnect with time delay

Charger 1							Charger 3							
	3 cycles	5 cycles	10 cycles	15 cycles		3 cycles	5 cycles	10 cycles	15 cycles		3 cycles	5 cycles	10 cycles	15 cycles
20%					20%					20%				
30%					30%					30%				
40%					40%					40%				
50%					50%					50%				
60%					60%					60%				

Test results for 80% voltage dip for 5s

Same charger with a different vehicle will perform differently © 2024 Electric Power Research Institute, Inc. All rights reserved.

EPG

Truck 2

Ride-through responses (EPRI testing 2024)

80% Voltage dip

For shallow sags, current limiting response was observed

Existing positive sequence model

Positive sequence model can replicate the slow dynamics in the measurements to a great extent

EPG

Next steps

- Current positive sequence model replicate slow dynamics observed to a large extent
- The need for limiting current in place of power is currently being evaluated
- There is a big need for testing more EVSEs
 - Not a simple task logistically, and quite expensive
- Dc-Dc fast charging equipment need to be tested
 - Planning to test at least one non-Tesla equipment this year
- Test results are not just dependent on the car or the charger, its dependent upon both

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved