

A Stepwise Regression Method for Estimating Dominant Electromechanical Modes

Ning Zhou Pacific Northwest National Laboratory

John Pierre University of Wyoming

Daniel Trudnowski Montana Tech

July 22-26, 2012 2012 IEEE PES General Meeting

Background: Ringdown Data Analysis

Quick detection of light damping modes;

Proudly Operated by Battelle Since 1965

2

Problem Formulation

- Target: separate dominant modes and trivial modes.
 - **Dominant modes** represents the dynamic feature of a power system.
 - **Trivial modes** are artificially added to suppress the noise and improve estimation accuracy.
- Motivations: reduce the rate of false alarms.

Available Methods

- Find the best-fit model using **parsimony principle**:
 - Akaike information criterion (AIC).
 - reduced-order model using the singular value decomposition (SVD).
- Empirical Study:
 - Sorting Energy.
- Proposed Method:
 - Stepwise regression.
 - **Motivation**: better performance under low Signal Noise Ratios (SNR).

The Stepwise Regression Method

Proudly Operated by Battelle Since 1965

- The stepwise-regression method provides a systematic way of identifying the dominant modes in a statistical framework, which takes a noise model into consideration.
- **Significance:** Is β_i close to 0 enough? (t-test).

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i + \dots + \beta_m x_m + e$$

Apply the Stepwise Regression on the Prony

Proudly Operated by Battelle Since 1965

- Reconstruct the ringdown responses for each mode.
 - Real modes:

$$egin{aligned} egin{aligned} egin{aligned} X_{real} &= real \Big(& \hat{c}_i \Big[\hat{z}_i^0 & \hat{z}_i^1 & \cdots & \hat{z}_i^{N-1} \Big]^T \Big) \end{aligned}$$

Complex modes:

$$X_{complex} = 2 \cdot real \left(\hat{c}_j \begin{bmatrix} \hat{z}_j^0 & \hat{z}_j^1 & \cdots & \hat{z}_j^{N-1} \end{bmatrix}^T \right)$$

- Apply the stepwise regression to check how significant the responses from each mode contribute to original measurement y.
 - Significant ⇔ dominant modes;
 - Insignificant ⇔ trivial modes;

A Simple Example: SNR=10 dB

Proudly Operated by Battelle Since 1965

Simulated ringdown responses with SNR=10 dB.

Identified modes from the proposed **stepwise-regression** method (n=24 for 100 Monte Carlo).

Observations:

- When SNR is high, both the proposed stepwise regression method and energy sorting method work well in identifying dominant modes.
- 2. There are some trivial modes with very light damping.

Identified modes from the **energy sorting** method (n=24 for 100 Monte Carlo).

1

A Simple Example: SNR= 3 dB

Proudly Operated by Battelle Since 1965

Simulated ringdown responses with SNR=3 dB.

Identified modes from the proposed **stepwise-regression** method (n=24 for 100 Monte Carlo).

Mode Index	Mode Freq (Hz)	Mode DR (%)	Energy Level	p-Value
1	1.07	32.7	8.6	0.13
2	0.25	8.4	7.1	4.1X10 ⁻⁴⁵
3	0.39	8.7	6.1	4.9X10 ⁻³⁵
4	1.12	11.1	5.6	0.10
5	0.97	8.7	3.7	0.27
6	1.58	4.5	2.0	0.08
7	1.4	3.2	1.6	0.10
8	2.5	2.8	1.2	0.87
9	0.7	5.6	1.1	0.06
10	2.3	2.5	0.8	0.35
11	2.1	3.6	0.6	0.10
12	1.8	0.9	0.4	0.76
13	0	100	0.1	0.74

Identified modes from the **energy sorting** method (n=24 for 100 Monte Carlo).

A Simple Example: Outliers v.s. SNR

SNR (dB)	Number of Outliers Using the Energy Sorting	Number of Outliers Using the Stepwise-regression		
10	0	0		
6	2	0		
3	4	0		
1	31	5		
0	55	13		

Observations:

- 1. The number of outliers increase when SNR is decreases.
- 2. The stepwise-regression method has less outliers than the energy sorting method.

17-machine Model: 700MW Brake

Proudly Operated by Battelle Since 1965

Insertion Amp (MW)	Outliers Using Energy Sorting	Outliers Using Stepwise-regression	
2800	2	0	
1400	6	0	
700	20	0	
350	42	8	

Combined ringdown responses and ambient data.

Damping (1/s) Identified modes from the proposed **stepwise-regression** method (n=24 for 100 Monte Carlo).

Field Measurement: Aug 10th, 1996 Breakup

Proudly Operated by Battelle Since 1965

Fig. 9. Recorded real power flow from Malin to Round Mountain with detected oscillation. (Reference time: August 10, 1996, 15:35:30 PDT).

Number of Outliers for the Identified Dominant Mode from 100 Monte Carlo Simulations For Measurement Data

SNR (dB)	Energy Sorting	Stepwise-regression	
10	1	0	
6	7	0	
3	13	0	
1	21	0	
0	27	1	

Energy Levels and *P*-Values from Studying the Ringdown Responses.

Mode Index	Mode Freq (Hz)	Mode DR (%)	Energy Level	p-Value
1	0.270	3.59	111.0	1.8X10 ⁻³⁹
2	0.032	70.48	19.5	7.2X10 ⁻⁶
3	0.652	5.93	12.0	0.46
4	0.805	4.90	9.2	0.81
5	0.483	19.71	8.5	0.25
6	1.955	2.95	7.7	0.84
7	1.398	6.86	6.2	0.64
8	1.524	3.14	5.6	0.94
9	2.417	1.34	5.1	0.90
10	1.045	2.75	4.6	1.00
11	1.728	2.50	3.6	0.98
12	2.180	2.48	2.9	0.37

Conclusions

- A stepwise-regression method is proposed for selecting the dominant modes.
- The stepwise-regression method outperforms the energy sorting method when the SNR is low.
- The performance of the proposed method improves with increasing SNR.
- The proposed method can automatically distinguish trivial modes with light damping and, therefore, reduce the rate of false alarms.

Questions?

Proudly Operated by Battelle Since 1965

June 14, 2013

Spare slide #1:

Measurements vs. Model Simulation

Proudly Operated by Battelle Since 1965

Spare Slide #2:

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Early Warnings based on PMU data

August 10, 1996 Western Power System Breakup California-Oregon Intertie

~6 minutes