

Record Specification and File Format for
Specifying Contingency Definitions and
Remedial Actions Schemes

 Date : October 22, 2013
 December 6, 2013
 January 21, 2015
 August 28, 2015

 Prepared by : James Weber, Ph.D.
 Director of Software Development
 PowerWorld Corporation
 (217) 384-6330 ext. 13
 weber@powerworld.com

 2001 South First Street
 Champaign, IL 61820
 (217) 384-6330
 www.powerworld.com

mailto:weber@powerworld.com
http://www.powerworld.com/

i

Table of Contents
1 PROJECT SUMMARY .. 1

2 BASIC FILE FORMAT RULES .. 2
2.1 SYNTAX RULES ... 2

2.1.1 Naming Conventions ... 2

2.1.2 Handling quotes inside of quoted strings ... 2

2.2 OBJECT TYPE STRINGS ... 3
2.2.1 Branch Objects (2-terminal AC devices) ... 3

2.3 SPECIFYING AN OBJECT USING A STRING .. 3
2.3.1 Special Notes To Maintain Compatibility between PowerWorld and EPC Power Flow File format
conventions ... 4

2.3.2 Special Note on Branch and LineShunt objects and Multi-Section Lines .. 5

2.3.3 Special Note on Branch objects and Three-Winding Transformers .. 6

2.3.4 Primary Keys ... 7

2.3.5 Secondary Keys ... 7

2.3.6 Label Identifiers .. 7

2.3.7 Naming Collisions .. 8

2.4 OBJECT FIELD DEFINITIONS .. 8
2.4.1 Branch and MSBranch Fields .. 8

2.4.2 Bus Fields .. 10

2.4.3 Gen Fields ... 11

2.4.4 Load Fields .. 11

2.4.5 Shunt Fields ... 12

2.4.6 Area Fields .. 12

2.4.7 Zone Fields .. 13

2.4.8 Substation Fields ... 13

2.4.9 Injection Group Fields ... 14

2.4.10 Interface Fields ... 14

2.4.11 3WXFormer Fields ... 15

2.4.12 DCTransmissionLine Fields .. 15

2.4.13 LineShunt Fields .. 15

2.4.14 VSCDCLine Fields ... 16

2.4.15 ModelExpression Fields .. 16

ii

2.4.16 VoltageControlGroup Fields.. 17

2.4.17 Model Filter Fields .. 17

2.4.18 Model Condition Fields ... 17

3 FILTERING AND DEVICE FILTERING .. 18
3.1 FILTER, CONDITION (FILTERING) .. 18
3.2 NESTED FILTERS ... 19
3.3 DEVICE FILTERING .. 20
3.4 SPECIFYING A FILTER OR DEVICE FILTER USING A STRING ... 20

4 SCRIPT SECTIONS TO SET DEFAULTS .. 21

5 DATA RECORD STRUCTURES .. 22
5.1 AREA (SETTINGS FOR CONTINGENCY MODELING) .. 24
5.2 BUS (SETTINGS FOR CONTINGENCY MODELING) .. 25
5.3 VOLTAGE CONTROL GROUP (SETTINGS FOR CONTINGENCY MODELING) ... 25
5.4 SHUNT (SETTINGS FOR CONTINGENCY MODELING) .. 26
5.5 GEN (SETTINGS FOR CONTINGENCY MODELING) .. 26
5.6 SIM_SOLUTION_OPTIONS_VALUE .. 28
5.7 CTG_OPTIONS_VALUE ... 30

5.7.1 Using Transient Stability Dynamic Models in Steady State Contingency Analysis .. 32

5.8 INJECTIONGROUP AND PARTPOINT .. 33
5.9 MODELEXPRESSION .. 35

5.9.1 Lookup Tables ... 36

5.9.2 Functions Available for Expression String ... 37

5.10 MODELCONDITION AND MODELCONDITIONCONDITION .. 38
5.11 MODELFILTER AND MODELFILTERCONDITION ... 40

5.11.1 Handling DisableIfTrueInRef for ModelFilterConditions ... 41

5.11.2 Calculated Time Delay of a Model Filter ... 41

5.12 RELATIONSHIPS BETWEEN OBJECTS .. 43
5.13 CONTINGENCY, CONTINGENCYELEMENT (TSCONTINGENCY, TSCONTINGENCYELEMENT) .. 43

5.13.1 Special Treatment for ContingencyElement Object Field ... 45

5.13.2 Criteria Status ... 46

5.13.3 Calculated Time Delay .. 47

5.13.4 Contingency Actions ... 47

5.13.5 Special InjectionGroup Contingency Action for Generators by Merit Order .. 61

5.14 REMEDIALACTION AND REMEDIALACTIONELEMENT .. 61

6 STEADY STATE CONTINGENCY ANALYSIS WITH RAS AND STABILITY MODELS ... 62

iii

7 TRANSIENT STABILITY CONTINGENCY ANALYSIS PROCESSING WITH RAS .. 63

8 LIMIT MONITORING SETTINGS .. 64
8.1 LIMITSET .. 64

8.1.1 Branch and Interface relationship to LimitSet .. 66

8.1.2 Bus relationship to LimitSet .. 66

8.2 AREA (SETTINGS FOR LIMIT MONITORING) ... 67
8.3 ZONE (SETTINGS FOR LIMIT MONITORING) ... 67
8.4 BUS (SETTINGS FOR LIMIT MONITORING) ... 68
8.5 BRANCH (SETTINGS FOR LIMIT MONITORING) ... 68
8.6 INTERFACE (SETTINGS FOR LIMIT MONITORING) .. 69
8.7 CUSTOMMONITOR ... 69

9 FINAL DEMONSTRATION ... 71
9.1 SAVING A FILE IN THIS FORMAT .. 71
9.2 LOADING A FILE IN THIS FORMAT INTO POWERWORLD SIMULATOR .. 73
9.3 EXAMPLE FILE IN THIS FORMAT .. 74

1

1 Project Summary

This project will be the very big first step in creating data record definitions that will enable the
exchange of all data related to running power flow and transient stability contingency simulations
among engineers throughout WECC. This will include any information needed to define the
contingencies as well as remedial action schemes (RAS) and post-contingency solution options
important to accurately simulate the power flow based contingency solutions. Specifications for data
record definitions necessary to define what is monitored in a contingency processor are also given.

This initial project will achieve most of this objective, and in particular, will define and document record
structures and a file format that can be used to specify the following:

1. File format syntax rules (Section 2.1), Syntax for defining references to other objects in the
power system model from within this text file (Sections 2.2 and 2.3), Syntax for field names
(Section 2.4), Syntax for Filtering (Section 3), and Syntax for simple SCRIPT section (Section 4)

2. Options for how area, bus, and generators respond during a post contingency power flow
solution, meant to model post-transient behavior (Sections 5.1, 5.2, and 5.5)

3. Options for how a contingency processor solution is performed (Sections 5.6 and 5.7)
4. Generic Structures for defined RAS logic and actions in the power flow contingency processor

(Sections 5.8, 5.9, 5.10, and 5.11)
5. Contingency records for use by either a power flow contingency processor or a transient stability

processor (Section 5.11.1)
6. Remedial Action Schemes appropriate for a power flow contingency processor (Section 5.14)
7. Use of transient stability dynamic models in the power flow contingency analysis solution

environment (Section 5.7.1)
8. Specification of Limit Monitoring Settings (Section 8)

In addition to defining and documenting the record structures and file formats, a demonstration of
reading and writing this information from a text file format is shown in Section 9. The ability to read and
write this new format has been integrated into PowerWorld Simulator.

While this will be a very good list of accomplishments that will be achieved in this short project, it does
leave a hole in the ability to immediately, completely and generically specify RAS for use in the transient
stability environment. The long-term way in which RAS will be modeled in the transient stability
environment and how this modeling information will be shared among engineers is not fully formed.
There is not a broad agreement yet within the WECC engineering community on how this should be
done. PowerWorld Corporation suspects that there are dozens of variations of what the final
environment might look like in the heads of different engineers throughout WECC.

While this hole represents a portion of this overall vision that PowerWorld Corporation is highly
interested in, we think that the first step in getting to the WECC community’s long-term solution is to
concentrate on getting the list above completed in this short, well-defined project. This will give
everyone involved in doing this project, or in reading the results of the project, an opportunity to study
what is learned in this project and what is available now. It will then help better inform decisions for
follow-on efforts related to modeling RAS in the transient stability environment.

2

2 Basic File Format Rules

2.1 Syntax Rules

The following is a list of general syntax rules that apply throughout this file format:

• All strings are case insensitive. Thus "Contingency" is treated the same as "CONTINGENCY" or
"contingency" or "CoNtInGeNcY". This will be true for names, fields, and any key words in the
file syntax.

• Any line that starts with the two backslashes (//) will be treated as a comment and be ignored
when parsing the file. Text appearing after two backslashes will also be treated as comments.

• Blank lines of text are ignored and skipped
• Many text lines are space delimited strings that use double quotes ("") as string unifiers. Note

that these are straight quotes. Smart quotes such as “ ” are not supported by the format so be
careful when copying and pasting from some text editors.

• Any TAB characters in the text file will be treated as a single space when read by a file parser
• Consecutive spaces in the position of a delimiter are treated as a one string delimiter

2.1.1 Naming Conventions

There are many objects in this file format that have a name including Model Conditions, Model Filters,
Model Expressions, Contingencies, Remedial Action Schemes, and Injection Groups. There will be no
restrictions placed on the length or content of the names in this format, except that they are limited to
ASCII characters. Obviously the user should use discretion and not create names with 1,500 characters,
but the file format will not specifically preclude this bad behavior.

2.1.2 Handling quotes inside of quoted strings

There are many places in the file format that require a string enclosed in either double quotes or single
quotes. Sometimes there are even double quote strings that contain a space delimited string that uses
single quotes inside of the double quotes.

For example, to specify a particular area, a space delimited string containing the string AREA followed by
the name of the area enclosed in single quotes is used. The entire string is then enclosed in double
quotes. However, if the name of the area contains either double or single quotes, this could cause
trouble in the text parser. To accommodate this potential, the format specifies that such quotes or
double quotes be repeated if contained inside of a string. Consider the examples in the following table:

Area Name Object ID String
WECC's Office "AREA 'WECC''s Office'"
"HIGH" Point’s "AREA '""HIGH"" Point''s'"

In most situations such as object names, using quotes or double quotes is highly discouraged. However,
it may be natural to include quotes in some of the fields in this document such as the Memo field for a
contingency. The memo field is a free-form string in which the user includes notes about the
contingency. Thus in general, this format will not enforce any requirement regarding quotes because in
the end it is not necessary. The format will require that software parsers handle these situations.

3

2.2 Object Type Strings

There are many places in this file format where a particular object type must be referenced. All object
type strings must not contain any spaces. The following is a list of some of the allowable object types:

Branch, Bus, Gen, Shunt, Load, Area, Zone, Substation, InjectionGroup, Interface,
3WXFormer, DCTransmissionLine, LineShunt, VSCDCLine, ModelExpression, Contingency,
ContingencyElement, TSContingency, TSContingencyElement, RemedialAction,
RemedialActionElement, CTG_Options_Value, Sim_Solution_Options_Value, LimitSet,
CustomMonitor, ModelFilter, ModelFilterCondition, ModelCondition,
ModelConditionCondition, Filter, Condition

2.2.1 Branch Objects (2-terminal AC devices)

An object type BRANCH signifies either an AC transmission line, 2-winding transformer, a series
capacitor or reactor, or any AC device which connects two buses. Within a BRANCH there is then a field
BranchDeviceType which can have the following entries: Line, Transformer, Series Cap, Breaker,
Disconnect, ZBR, Fuse, Load Break Disconnect, or Ground Disconnect. This enumeration of device
types comes from the Common Information Model (CIM) specification, except that a ZBR is called a
Jumper in CIM. In general a user may toggle between these various device types, with the exception of
a Transformer. Once an object is specified as a transformer it may not be turned back into a another
branch device type.

2.3 Specifying an object using a string

There are many places in this file format where a particular object must be referenced. In these
situations a string will be specified that is enclosed in double quotes. The object string will be space
delimited with the first string representing the object type. Object type strings from Section 2.2 will
never have spaces in them. Following the object type string there will be identification information for
the object. This information allows for three potential formats that the software will need to parse:
Primary Keys, Secondary Keys, or Labels. While each object can have labels, each different object type
can have a different number of key fields. The key fields for the various object types are as follows:

Object Type Primary Key Fields Secondary Key Fields
Gen BusNum

ID
BusNameNomkV
ID

Bus Number NameNomkV
Branch BusNumFrom

BusNumTo
Circuit

BusNameNomkVFrom
BusNameNomkVTo
Circuit

Branch
(Special treatment for
interacting with
Branches using the
EPC format)

MSBusNumFrom
MSBusNumTo
Circuit
Section

MSBusNameNomkVFrom
MSBusNameNomkVTo
Circuit
Section

Load BusNum
ID

BusNameNomkV
ID

4

Shunt BusNum
ID

BusNameNomkV
ID

Area Number Name
Zone Number Name
Substation Number Name
InjectionGroup Name none available
Interface Name Number
3WXformer BusNumPri

BusNumSec
BusNumTer
Circuit

BusNameNomkVPri
BusNameNomkVSec
BusNameNomkVTer
Circuit

DCTransmissionLine BusNumRect
BusNumInv
Circuit

BusNameNomkVRect
BusNameNomkVInv
Circuit

LineShunt BusNumFrom
BusNumTo
BusNumLoc
Circuit
ID

BusNameNomkVFrom
BusNameNomkVTo
BusNameNomkVLoc
Circuit
ID

LineShunt
(Special treatment for
interacting with
Branches using the
EPC format)

MSBusNumFrom
MSBusNumTo
MSBusNumLoc
Circuit
ID
Section

MSBusNameNomkVFrom
MSBusNameNomkVTo
MSBusNumLoc
Circuit
ID
Section

VSCDCLine Name none available
ModelExpression Name none available

2.3.1 Special Notes To Maintain Compatibility between PowerWorld and EPC Power Flow
File format conventions

The feature above for using the Interface Number as a secondary key field has been added to Simulator
Version 18. The Interface name remains the primary key and PowerWorld Simulator requires that the
name be unique for all interfaces. Interface numbers within PowerWorld Simulator have traditionally
not been maintained by our user base and as a result when writing out the information to this format,
PowerWorld Simulator will always write the name of the interface. We can however read files which
use the number as a key identifier.

The three-winding transformer key identifiers in PowerWorld Simulator are slightly different than what
is shown in the previous table, however for the purposes of writing out and reading this format, changes
have been made to PowerWorld Simulator Version 18 so that the key identifiers as shown in the table
can be used. This makes the format more consistent with those used by PSS/E and PSLF.

5

2.3.2 Special Note on Branch and LineShunt objects and Multi-Section Lines

In PowerWorld Simulator as well as PSS/E RAW files, branch records have 3 unique identifiers: “from
bus”, “to bus”, and “circuit ID”. There is also a concept of a multi-section line, but this is purely an
aggregation object that groups together a series of branches whose statuses are coordinated. Thus
within a multi-section line, when one branch changes status, then all branches within the multi-section
line group change status to stay coordinated with other branches. The unique identifiers within the
various branches in the multi-section line include the intermediate bus numbers or name/kv
combinations.

Within a PSLF EPC file format however, the concept of a multi-section line is fundamentally embedded
within the concept of the EPC format’s branch record. Thus instead of only 3 identifiers, there are 4
identifiers for a branch within the EPC format: “from bus”, “to bus”, “circuit ID”, and “section number”.
There can then be a number of sections that traverse the from bus toward the to bus.

As an example, consider the multi-section line shown below which has 7 sections in series that traverse
from bus 40489 to 40687. Normally within PowerWorld Simulator (and a PSS/E RAW file) the 4th section
would be identified as "Branch 40704 40706 2". Within GE PSLF however, this branch would instead
be identified as "Branch 40489 40687 2 4". Both of these have the same meaning but there are
fundamental differences in the identifiers used.

This is something that must be managed by this format. To be consistent with the file format
traditionally used within WECC to transfer power flow data between members (which is the EPC file),
the format described in this document will force consistency with the EPC file concept of a branch
record. The intermediate bus numbers 40700 through 40710 above would not appear in the EPC file
format at all and thus are not part of the normal WECC data formats. Because this format does not
create any branches, but only refers to branches to define contingency events, model conditions, and so
forth, this can be achieved within the PowerWorld structure and is achievable by any other software
tool which manages multi-section line records. If the file format involved the creation of branches then
this would be more troublesome, but for the RAS and contingency format this is acceptable.

Therefore, anywhere that a branch is referred to using the object ID string with primary or secondary
keys as described in the following sections, if the branch is part of a multi-section line, then 4 identifiers
must be used and parsed accordingly. For branches that are not part of a multi-section line when
reading in a file in this format the parser must handle the omission of the identifier if it’s not needed. In

6

addition a parser must be able to ignore this 4th identifier in a file if it’s not needed. When identifying
branches using labels this is not relevant and the object ID string is simply "Branch 'My Label'".

A similar convention will be used for the LineShunt object. If a line shunt exists with Shunt ID “A” at bus
40706 at Section 6 of the multi-section line as shown in the picture above, then normally PowerWorld
Simulator would refer to this Line Shunt as "LineShunt 40708 40710 40708 2 A". To maintain
compatibility with the treatment of multi-section lines in the EPC file format this must be expressed
instead as "LineShunt 40489 40687 40489 2 A 6". The Section ID has been appended to the end of
the key field lists. Also note that the 3rd identifier shows the terminal bus identifier for the multi-section
line record which is on the same side as the line shunt relative to its branch.

Again, anywhere that a LineShunt is referred to using the object ID string with primary or secondary keys
as described in the following sections, if the branch to which the LineShunt is connected is part of a
multi-section line, then 6 identifiers must be used and parsed accordingly instead of 5. Note that when
identifying line shunts using labels this is not relevant and the object ID string would be simply
"LineShunt 'My Label String'".

2.3.3 Special Note on Branch objects and Three-Winding Transformers

In PowerWorld Simulator as well as PSLF files, when referring to a particular winding of a three-winding
transformer, the unique identifiers include the bus identifier for the internal bus (also called the star
bus). Within a PSS/E RAW file however, the identifying information for these internal buses is not
persistent (for example, in a RAW file the internal buses of three-winding transformers do not exist in
the bus table). This is similar to the previous concept in the EPC format where the intermediate buses of
multi-section lines do not exist. As a result, to help allow with PSS/E support when reading or writing a
particular winding of a terminal of a three-winding transformer we will allow an alternate way to
describe the branch. This will effect situations such as defining interface definitions, or when monitoring
the flow on a winding branch of a three-winding transformer in a Model Condition.

Consider a three-winding transformer which has terminals at buses 10001, 10002 and 10003 and has a
circuit of AB and an internal bus number of 10004. In the past in Simulator and PSLF one would refer to
one of the windings using the internal star bus number. Instead we will now identify the branch using 4
unique identifiers that include the three terminal buses and the circuit ID. The branch will then be
interpreted to represent the winding associated with the first terminal bus listed. This means that the
order of the second and third buses lists does not matter. As a result our three windings would be
represented as follows.

Winding Traditional Identifying String in
PSLF and Simulator

Modified Method which will not use the
Internal Bus Number

Primary "BRANCH 10001 10004 'AB'" "BRANCH 10001 10002 10003 'AB'" or
"BRANCH 10001 10003 10002 'AB'"

Secondary "BRANCH 10002 10004 'AB'" "BRANCH 10002 10001 10003 'AB'" or
"BRANCH 10002 10003 10001 'AB'"

Tertiary "BRANCH 10003 10004 'AB'" "BRANCH 10003 10001 10002 'AB'" or
"BRANCH 10003 10002 10001 'AB'"

7

2.3.4 Primary Keys

Primary keys for many objects are the bus numbers associated with the object and some string
identifiers. The format of the object string using primary keys is then the object type and then a list of
keys separated by spaces. If a key string has any spaces, a single quote must be used to enclose the key.
Note: A single quote is used because throughout the format these entire object strings are enclosed in
double quotes.

General Format "Objecttype 'key1' 'key2' 'key3'"
Generator "GEN 23 '12'"
Bus "BUS 33"
Branch "BRANCH 23 29 'AB'"
Branch "BRANCH 23 29 'AB' 4"

(multi-section line branch)
Branch "BRANCH 23 29 66 'AB'"

(three-winding transformer winding)
3WXformer "3WXFORMER 23 29 66 'AB'"
Area "AREA 51"
Zone "ZONE 93"
Substation "SUBSTATION 37"

2.3.5 Secondary Keys

Secondary keys for some objects are also available. These are often a combination of the bus name and
nominal kV value of a bus, or for other objects they replace the numbers with names. Not all objects
will have secondary key fields. For example, an injection group has only a name.

General
Format

"Objecttype 'key1' 'key2' 'key3'"

Generator "GEN 'Bus 23_138.00' '12'"
Bus "BUS 'Bus 33_500.00'"
Branch "BRANCH 'Bus 23_138.00' 'Bus 29_138.00' 'AB'"
Branch "BRANCH 'Bus 23_138.00' 'Bus 29_138.00' 'AB' 4"

(multi-section line branch)
Branch "BRANCH 'Bus45_345.00' 'Bus29_138.00' 'Bus28_69.00' 'AB'"

(three-winding transformer winding)
Area "AREA 'Fifty One'"
Zone "ZONE 'Ninety Three'"
Substation "SUBSTATION 'Thirty Seven'"

2.3.6 Label Identifiers

Label Identifiers are can also be specified for a particular object. Each particular object could potentially
have multiple labels assigned to them, but within one object type, only one object can have a particular
label. The format of the object string using a label is then simply the object type followed by the label
enclosed in single quotes.

General Format "Objecttype 'label'"
Generator "GEN 'GrandCoule12'"
Bus "BUS 'Coulee_N56'"
Branch "BRANCH 'CaptJackGrizzly_56"

8

2.3.7 Naming Collisions

It is possible in this format for a power system model to have secondary fields which do not create a
unique identifier for the case. For example, the secondary key fields for buses are the concatenation of
the Name and Nominal kV. These are almost always unique, but not always. For example, a recent
WECC cases and there are 4 buses named CanyonGT at 13.8 kV (numbers 25211-25214). When reading
from a file referencing the bus "CanyonGT_13.8", this format would just pick the one that a software
vendors search routine finds first. There is no guarantee that this will be the one intended, so this is
something the user must be careful with if using secondary key fields.

It is also possible for the label identifiers to collide with the secondary keys as well. Our experience in
practice is that the labels are derived from unique identifiers in the EMS models which are longer than
the secondary key strings and are a concatenation of the substation name(s), some unique delimiter like
a $. Thus in practice this shouldn’t happen, but it is possible.

It is even possible with labels that there could be a conflict between the primary key and the label. We
do not expect to see too many buses with a label of “1234”, but a user could do something like that.

Regardless of these hypothetical limitations, when parsing these strings, this format instructs that
software parsers will always look first for the primary keys, then the secondary keys, and finally for any
of the labels. Thus if there is a conflict between secondary keys and the labels, then the secondary key
will have precedence.

2.4 Object Field Definitions

The following is the start of a list of fields that will be defined for each object type. Collaboration
between WECC members, PowerWorld Corporation staff, and other software vendor staff will more
fully define which fields are necessary for modeling purposes of contingency analysis. Adding new
variables to the parsing will be trivial for the software vendors so we will add them as requested.

2.4.1 Branch and MSBranch Fields

Field Description
BusNumFrom Number of the from bus
BusNameFrom Name of the from bus
BusNameNomkVFrom Combination of the Name and the kV of the from bus separated by an

underscore. For example “Johnson_34.5”
BusNumTo Number of the to bus
BusNameTo Name of the to bus
BusNameNomkVTo Combination of the Name and the kV of the to bus separated by an

underscore. For example “Johnson_34.5”
Circuit Circuit ID of the branch
Status either OPEN or CLOSED
DerivedStatus either OPEN, OPENFROM, OPENTO, or CLOSED
Online YES or NO

9

DerivedOnline either OPEN, OPENFROM, OPENTO, or CLOSED
Bypassed Either Bypassed or Not Bypassed
MWFrom MW flow at the from bus going toward the to
MWTo MW flow at the to bus going toward the from
MWMax Maximum absolute value of MWFrom and MWTo
MVARFrom Mvar flow at the from bus going toward the to
MvarTo Mvar flow at the to bus going toward the from
MvarMax Maximum absolute value of MvarFrom and MvarTo
AmpsFrom Amps at the from bus
AmpsTo Amps at the to bus
AmpsMax Maximum of the AmpsFrom and AmpsTo
MVAFrom MVA at the from bus
MVATo MVA at the to bus
MVAMax Maximum of the MVAFrom and MVATo
PercentMVA Percentage of the MVA limit
Percent Percentage flow on the branch according to the software’s monitoring options.

This value may be based on the Amps instead of MVA for example
Monitor Set to YES to monitor the device or NO to not. See Section 8 for details.
LimitSet Name of the LimitSet to which the branch belongs. See Section 8 for details.
LimitMVAA MVA Limit A. See Section 8 for details.
LimitMVAB MVA Limit B. See Section 8 for details.
LimitMVAC MVA Limit C. See Section 8 for details.
LimitMVAD MVA Limit D. See Section 8 for details.
LimitMVAE MVA Limit E. See Section 8 for details.
LimitMVAF MVA Limit F. See Section 8 for details.
LimitMVAG MVA Limit G. See Section 8 for details.
LimitMVAH MVA Limit H. See Section 8 for details.
The following are special fields for identifiers consistent with the EPC format’s treatment of multi-
section lines.

Field Description
MSBusNumFrom If the branch is not part of a multi-section line then this is the same as

BusNumFrom. If branch is part of a multi-section line then this is the number
of the from bus of the multi-section line.

MSBusNameNomkVFrom If the branch is not part of a multi-section line then this is the same as
BusNameNomkVFrom. If branch is part of a multi-section line then this is the
name_NomkV of the from bus of the multi-section line.

MSBusNumTo If the branch is not part of a multi-section line then this is the same as
BusNumTo. If branch is part of a multi-section line then this is the number of
the to bus of the multi-section line.

MSBusNameNomkVTo If the branch is not part of a multi-section line then this is the same as
BusNameNomkVTo. If branch is part of a multi-section line then this is the
name_NomkV of the to bus of the multi-section line.

10

Section If the branch is not part of a multi-section line this entry is blank.
If branch is part of a multi-section line, this is the section number within the
multi-section line.

2.4.2 Bus Fields

Field Description
Number Number of the bus
Name Name of the bus
NameNomkV Combination of the Name and the kV of the bus separated by an underscore. For

example “Johnson_34.5”
Status Either DISCONNECTED or CONNECTED
Vpu The per unit voltage magnitude of the bus
Vangle The angle of the bus in degrees
kV The voltage magnitude in kilovolts
NomkV The nominal voltage of the bus in kilovolts
LoadMW The total load at the bus in MW. If there are no loads defined at the bus then

this value is blank.
LoadMvar The total load at the bus in Mvar. If there are no loads defined at the bus then

this value is blank.
GenMW The total generation at the bus in MW. If there are no generators defined at the

bus then this value is blank.
GenMvar The total generation at the bus in Mvar. If there are no generators defined at the

bus, value is blank.
GenMWMax The sum of generation Max MW at the bus. If there are no generators defined at

the bus, value is blank.
GenMWMin The sum of generation Min MW at the bus. If there are no generators defined at

the bus, value is blank.
GenMvarMax The sum of generation Max Mvar at the bus. If there are no generators defined

at the bus, value is blank.
GenMvarMin The sum of generation Min Mvar at the bus. If there are no generators defined

at the bus, value is blank.
ShuntMvar The total switched shunt (both svd and bus) at the bus in Mvar. If there are no

shunts (svd or bus) defined at the bus, value is blank.
Monitor Set to NO to signify that the bus should not be monitored. Set to YES to make it

eligible for monitoring as described in Section 8.
LimitSet Set to the name of the Limit Set to which the Bus belongs. See Section 8 for

details.
UseSpecificLimits Set to YES to signify that the bus has its own limits specified by

LimitHighA…LimitHighD and LimitLowA…LimitLowD. See Section 8 for details.
LimitHighA High voltage limit A. See Section 8 for details.
LimitHighB High voltage limit B. See Section 8 for details.
LimitHighC High voltage limit C. See Section 8 for details.
LimitHighD High voltage limit D. See Section 8 for details.
LimitLowA Low voltage limit A. See Section 8 for details.
LimitLowB Low voltage limit B. See Section 8 for details.

11

LimitLowC Low voltage limit C. See Section 8 for details.
LimitLowD Low voltage limit D. See Section 8 for details.

2.4.3 Gen Fields

Field Description
BusNum Number of the terminal bus of the generator
BusName Name of the terminal bus of the generator
BusNameNomkV Name_NomkV of the terminal bus of the generator
ID ID of the generator. This is unique for generators which are connected to the same

bus.
Status either OPEN or CLOSED
DerivedStatus either OPEN or CLOSED but determined by looking at the surrounding breaker topology
Online YES or NO
MW MW output of the generator
MWMax Maximum MW output of generator
MWMin Minimum MW output of generator
Mvar Mvar output of the generator
MvarMax Maximum Mvar output of generator
MvarMin Minimum Mvar output of generator
MVA MVA of generator
CTGPreventAGC field for contingency analysis discussed later.
CTGPartFact field for contingency analysis discussed later.
CTGMaxResp field for contingency analysis discussed later.
UseLineDrop field for contingency analysis discussed later.
Xcomp field for contingency analysis discussed later.
Rcomp field for contingency analysis discussed later.
AGC YES or NO (specifies if generator respond to automatic generator control features)
PartFact Numerical value for specifying the participation factor of the generator

2.4.4 Load Fields

Field Description
BusNum Number of the terminal bus of the load
BusName Name of the terminal bus of the load
BusNameNomkV Name_NomkV of the terminal bus of the load
ID ID of the load. This is unique for loads which are connected to the same bus.
Status Either OPEN or CLOSED
DerivedStatus Either OPEN or CLOSED but determined by looking at the surrounding breaker topology
Online YES or NO
MW MW of load
Mvar Mvar of Load
MVA MVA of Load

12

SMW Constant Power MW of Load
SMvar Constant Power Mvar of Load
IMW Constant Current MW of Load
IMvar Constant Current Mvar of Load
ZMW Constant Impedance MW of Load
ZMvar Constant Impedance Mvar of Load

2.4.5 Shunt Fields

Field Description
BusNum Number of the terminal bus of the shunt
BusName Name of the terminal bus of the shunt
BusNameNomkV Name_NomkV of the terminal bus of the shunt
ID ID of the shunt. This is unique for shunts which are connected to the same

bus.
Status Either OPEN or CLOSED
DerivedStatus Either OPEN or CLOSED but determined by looking at the surrounding

breaker topology
Online YES or NO
MW MW of shunt (normally zero)
MWNom Nominal MW of shunt (normally zero)
Mvar Mvar of shunt at present per unit voltage
MvarNom Nominal Mvar of shunt
MvarNomMax Maximum Nominal Mvar
MvarNomMin Minimum nominal Mvar
VoltageControlGroup Name of the Voltage Control Group to which the Switched Shunt belongs

2.4.6 Area Fields

Field Description
NomkVMin Minimum nominal voltage of the area.
NomkVMax Maximum nominal voltage of the area.
LoadMW The sum of load MW at all loads in the area. If there are no loads defined in the

area, value is blank.
LoadMvar The sum of load Mvar at all loads in the area. If there are no loads defined in the

area, value is blank.
GenMW The sum of generation MW in the area. If there are no generators defined in the

area, value is blank.
GenMvar The sum of generation Mvar in the area. If there are no generators defined in the

area, value is blank.
GenMWMax The sum of generation Max MW in the area. If there are no generators defined in

the area, value is blank.
GenMWMin The sum of generation Min MW in the area. If there are no generators defined in

the area, value is blank.
GenMvarMax The sum of generation Max Mvar in the area. If there are no generators defined in

13

the area, value is blank.
GenMvarMin The sum of generation Min Mvar in the area. If there are no generators defined in

the area, value is blank.
MonitorLimits YES or NO to monitor limits in this area
MonitorMinkV Minimum nominal kV that will be monitored
MonitorMaxkV Minimum nominal kV that will be monitored
CTGMakeupGen field for contingency analysis discussed later.

2.4.7 Zone Fields

Field Description
NomkVMin Minimum nominal voltage of the zone.
NomkVMax Maximum nominal voltage of the zone.
LoadMW The sum of load MW at all loads in the zone. If there are no loads defined in the

zone, value is blank.
LoadMvar The sum of load Mvar at all loads in the zone. If there are no loads defined in the

zone, value is blank.
GenMW The sum of generation MW in the zone. If there are no generators defined in the

zone, value is blank.
GenMvar The sum of generation Mvar in the zone. If there are no generators defined in the

zone, value is blank.
GenMWMax The sum of generation Max MW in the zone. If there are no generators defined in

the zone, value is blank.
GenMWMin The sum of generation Min MW in the zone. If there are no generators defined in

the zone, value is blank.
GenMvarMax The sum of generation Max Mvar in the zone. If there are no generators defined in

the zone, value is blank.
GenMvarMin The sum of generation Min Mvar in the zone. If there are no generators defined in

the zone, value is blank.
MonitorLimits YES or NO to monitor limits in this zone
MonitorMinkV Minimum nominal kV that will be monitored
MonitorMaxkV Minimum nominal kV that will be monitored

2.4.8 Substation Fields

Field Description
NomkVMin Minimum nominal voltage of the substation.
NomkVMax Maximum nominal voltage of the substation.
LoadMW The sum of load MW at all loads in the substation. If there are no loads defined in

the substation, value is blank.
LoadMvar The sum of load Mvar at all loads in the substation. If there are no loads defined in

the substation, value is blank.
GenMW The sum of generation MW in the substation. If there are no generators defined in

the substation, value is blank.
GenMvar The sum of generation Mvar in the substation. If there are no generators defined in

the substation, value is blank.

14

GenMWMax The sum of generation Max MW in the substation. If there are no generators
defined in the substation, value is blank.

GenMWMin The sum of generation Min MW in the substation. If there are no generators
defined in the substation, value is blank.

GenMvarMax The sum of generation Max Mvar in the substation. If there are no generators
defined in the substation, value is blank.

GenMvarMin The sum of generation Min Mvar in the substation. If there are no generators
defined in the substation, value is blank.

2.4.9 Injection Group Fields

Field Description
Name Name of the injection group
MW The total net MW injection of the group.
Mvar The total net Mvar injection of the group.
LoadMW The sum of load MW at all loads in the substation. If there are no loads defined

in the substation, value is blank.
LoadMvar The sum of load Mvar at all loads in the substation. If there are no loads defined

in the substation, value is blank.
GenMW The sum of generation MW in the substation. If there are no generators defined

in the substation, value is blank.
GenMvar The sum of generation Mvar in the substation. If there are no generators

defined in the substation, value is blank.
GenMWMax The sum of generation Max MW in the substation. If there are no generators

defined in the substation, value is blank.
GenMWMin The sum of generation Min MW in the substation. If there are no generators

defined in the substation, value is blank.
GenMvarMax The sum of generation Max Mvar in the substation. If there are no generators

defined in the substation, value is blank.
GenMvarMin The sum of generation Min Mvar in the substation. If there are no generators

defined in the substation, value is blank.
CountGen Number of generator participation points
CountGenOnline Number of Online generator participation points
CountLoad Number of load participation points
CountLoadOnline Number of Online load participation points
CountShunt Number of switched shunt participation points
CountShuntOnline Number of Online switched shunt participation points

2.4.10 Interface Fields

Field Description
Name Name of the interface
Number Number of the interface
MW MW flow on interface
Mvar Mvar flow on interface
MVA MVA flow on interface

15

Percent Percent of limit used on interface according to the software’s monitoring options
Monitor Set to YES to monitor the device or NO to not
LimitSet Name of the LimitSet to which the interface belongs
LimitMWA MW Limit A. See Section 8 for details.
LimitMWB MW Limit B. See Section 8 for details.
LimitMWC MW Limit C. See Section 8 for details.
LimitMWD MW Limit D. See Section 8 for details.
LimitMWE MW Limit E. See Section 8 for details.
LimitMWF MW Limit F. See Section 8 for details.
LimitMWG MW Limit G. See Section 8 for details.
LimitMWH MW Limit H. See Section 8 for details.

2.4.11 3WXFormer Fields

Field Description
BusNumPri Number of the primary bus
BusNamePri Name of the primary bus
BusNameNomkVPri NameNomkV for primary bus
BusNumSec Number of the secondary bus
BusNameSec Name of the secondary bus
BusNameNomkVSec NameNomkV of the secondary bus
BusNumTer Number of the tertiary bus
BusNameTer Name of the tertiary bus
BusNameNomkVTer NameNomkV of the tertiary bus
Circuit Circuit ID of the transformer

2.4.12 DCTransmissionLine Fields

Field Description
BusNumRect Number of the rectifier bus
BusNameRect Name of the rectifier bus
BusNameNomkVRect NameNomkV of the rectifier bus
BusNumInv Number of the inverter bus
BusNameInv Name of the inverter bus
BusNameNomkVInv NameNomkV of the inverter bus
Circuit Circuit ID of the DC Line

2.4.13 LineShunt Fields

Field Description
BusNumFrom Number of the from bus of the branch to which the lineshunt is connected
BusNameFrom Name of the from bus of the branch to which the lineshunt is connected
BusNameNomkVFrom NameNomkV of the from bus of the branch to which the lineshunt is

connected

16

BusNumTo Number of the to bus of the branch to which the lineshunt is connected
BusNameTo Name of the to bus of the branch to which the lineshunt is connected
BusNameNomkVTo NameNomkV of the to bus of the branch to which the lineshunt is connected
Circuit Circuit ID of the branch
BusNumLoc Number of the bus at which the shunt is connected
BusNameNomkVLoc NameNomkV of the location at which the Line Shunt is connected
ID ID field for the line shunt (must be unique for all shunts connected to the same

end of branch)
The following are special fields for identifiers consistent with the EPC format’s treatment of multi-
section lines.

Field Description
MSBusNumFrom If the line shunt’s branch is not part of a multi-section line then this is the same

as BusNumFrom. If line shunt’s branch is part of a multi-section line then this
is the number of the from bus of the multi-section line.

MSBusNameNomkVFrom If the line shunt’s branch is not part of a multi-section line then this is the same
as BusNameNomkVFrom. If line shunt’s branch is part of a multi-section line
then this is the Name_NomkV of the from bus of the multi-section line.

MSBusNumTo If the line shunt’s branch is not part of a multi-section line then this is the same
as BusNumTo. If line shunt’s branch is part of a multi-section line then this is
the number of the to bus of the multi-section line.

MSBusNameNomkVTo If the line shunt’s branch is not part of a multi-section line then this is the same
as BusNameNomkVTo. If line shunt’s branch is part of a multi-section line then
this is the name_NomkV of the to bus of the multi-section line.

Section If the line shunt’s branch is not part of a multi-section line this entry is blank.
If line shunt’s branch is part of a multi-section line, this is the section number
within the multi-section line.

MSBusNumLoc Multi-Section line terminal bus number which is on the same side as the line
shunt relative to its branch

MSBusNameNomkVLoc Multi-Section line terminal bus name and nominal kV which is on the same
side as the line shunt relative to its branch

2.4.14 VSCDCLine Fields

Field Description
Name Name of the VSCDCLine. This is the unique identifier
BusNumRect Number of the rectifier bus
BusNameRect Name of the rectifier bus
BusNameNomkVRect NameNomkV if the rectifier bus
BusNumInv Number of the inverter bus
BusNameInv Name of the inverter bus
BusNameNomkVInv NameNomkV of the inverter bus

2.4.15 ModelExpression Fields

Field Description

17

Expression The result of the model expression evaluation

2.4.16 VoltageControlGroup Fields

Field Description
Name The name of the voltage control group
Status Status of the group. Set to one of the following three choices: ON, OFF, or FORCEON

These will be discussed more a later section

2.4.17 Model Filter Fields

Field Description
Name Name of the Model Filter contained in double quotes. Note: Names must be unique

across all other ModelFilters and ModelConditions.
Memo Extra String
Meets Value will be YES if the Model Filter logic evaluates to TRUE in the present system

state.

2.4.18 Model Condition Fields

Field Description
Name Name of the Model Condition contained in double quotes. Note: Names must be

unique across all other ModelFilters and ModelConditions.
Memo Extra String
Meets Value will be YES if the Model Condition logic evaluates to TRUE in the present

system state.

18

3 Filtering and Device Filtering

Filtering and Device Filtering can be used to designate a grouping of a type of objects. For example, one
may want to specify that all Bus objects that meet a particular Filter should be monitored. This will be
used with Custom Monitors described in Section 8.7. Filtering can be done either by building a logical
description of which objects to choose (building a “Filter”) or by specifying another object which itself
inherently defines the filter (Device Filtering). These will be presented here and a format for their
specification will be presented.

3.1 Filter, Condition (filtering)

The definition of a Filter allows you to create a Boolean operator that applies to a type of object. This is
different than the Model Conditions or Model Filters described in Section 5.10 and 5.11 that create
combinations of Boolean operators that apply to specific objects. The definition of the Filter uses the
following list of fields:

 Field Description and Rules for Field
ObjectType Identifies the type of object to which this Filter can be applied using the object

type string in format specified in Section 2.2.
Name The Name of Filter. This must be unique across all filters that have the same

ObjectType
Logic Logic to apply to the list of comparisons (AND, OR, NAND, NOR)
Enabled Set to YES to use the filter result normally. Set to NO to ignore this filter result,

which when used alone means the filter result will return TRUE. When set to
NO and used in a nested filter definition, the filter will act as though it does not
exist at all (treatment depends on the overall nested filter logic).

Filters are made up of any number of Condition objects. The fields recognized by the Condition object
type are shown in the following table:

Field Description and Rules for Field
ObjectType ObjectType of the Filter to which the Condition applies
Filter Name of the Filter to which the Condition applies
CondNum Number specifying a number ID of the condition. Omitting this value, or

specifying a value of zero, will cause this to automatically add the condition
to the existing Filter. Otherwise by specifying a number you can edit an
existing condition.

ObjectField A field associated with the object to which this model condition applies. A
list of fields is shown in Section 2.4. In addition to these fields, you may also
specify the string "_UseAnotherFilter" to signify that this condition refers
to another Filter. This will be important for the creation of more complex
nested filter definitions as described in Section 3.2.

ConditionType The comparison operator applied to the ObjectField and the Value and
OtherValue entries. There are many choices as follows:
 = equal (should not use for numbers)
 <> not equal
 > greater than
 < less than

19

 >= greater than or equal
 <= less than or equal
Integer comparisons
 inrange enter a string as the Value of the form "2-5, 70-90”
 notinrange enter a string as the Value. Opposite of inrange.
String Comparisons
 contains returns whether string contains a particular substring
 notcontains opposite of contains
 startswith returns whether a string starts with a string
 notstartswith opposite of startswith
Two value comparisons
 about specify two values. Return whether the field is within

the OtherValue (tolerance) of the Value
 notabout specify two values. Opposite of about
 between specify two values the field is between
 notbetween specify two values the field is not between
_UseAnotherFilter comparisons
 Meets returns whether another filter’s conditions are met
 Not Meets returns whether another filter’s conditions are not met

Value

Value or Field or Expression. The entry specifies the value to which the field
is compared. This may be done in three ways
Value : 1.459 or a String
Field : start with the tag <Field> and then follow with a string

using the format as the ObjectField string
Model Expression : start with the tag <Expression> and then follow the

name of the Model Expression
OtherValue This entry’s format is the same as the Value entry. It is only used for the

between, notbetween, about, and notabout Condition Types
Absolute Set to YES to take the absolute value of the ObjectField being compared

A sample file section is shown as follows:

Filter (ObjectType,Name,Logic,Enabled)
{
"Gen" "Roughrider over Max" "AND" "YES"
}
Condition (ObjectType,Filter,CondNum,ObjectField,ConditionType,Value,OtherValue,Absolute)
{
"Gen" "Roughrider over Max" 1 "MW" ">" "<Field>MWMax" "" "NO"
}

3.2 Nested Filters

Once you choose the Logic for the Filter, that logic is applied across all conditions in the filter. Therefore
if you wish to use the AND condition, all conditions you define will be applied using AND. There is a way
to combine different conditions within the same filter. This is accomplished by allowing nested filters. In
other words, one condition of a filter can be that another filter is met. To refer to one filter from within

20

another, use the special field "_UseAnotherFilter". Then choose whether the ConditionType Meets or
NotMeets. Finally, enter the name of the Filter in the Value field. This allows you to define conditions
using one logical comparison in one filter, and then use that filter to combine those conditions with
other conditions using a different logical comparison.

For example, consider the logical comparison of A and (B or C). To replicate this, you would define one
filter (AF1) that contains the logic B or C. Then you can define a filter (AF2) that contains the logic A and
(AF1).

A sample file section showing a nested filter is shown as follows:

FILTER (ObjectType,Name,Logic,Enabled)
{
"Load" "Neg MW" "AND" "NO" "YES"
"Bus" "Neg Load or Generator" "OR" "NO" "YES"
}
CONDITION (ObjectType,Filter,CondNum,ObjectField,ConditionType,Value,OtherValue,Absolute)
{
"Load" "Neg MW" 1 "LoadMW" "<" "0" "" "NO"
"Bus" "Neg Load or Generator" 1 "BusGenMW" "notisblank" "" "" "NO"
"Bus" "Neg Load or Generator" 2 "_UseAnotherFilter" "meets" "<Load>Neg MW" "" "NO"
}

3.3 Device Filtering

Device Filtering allows you to directly use one of the power system model objects as a filter. The
relationship between the object type being listed and the object type of the device filter determines
how filtering is done. For example, an injection group can be used as a device filter to filter a list of
generators. The result of using this filter will be only the generators that are inside the Injection Group.

As another example, if you are using an injection group as a device filter to filter a list of branches, then
you will get only branches that are connected to the terminal bus of any generator, load, or switched
shunt contained in the injection group. Device filtering can be often used instead of more complicated
Filters, with the benefit being that a new data record (a new Filter) is not needed.

3.4 Specifying a Filter or Device Filter using a string

In places in this file format where there is a choice to refer to a “Filter” there will be an explicit object
type implied in that circumstance (call that the primary ObjectType). For example, in Section 8.7 a
CustomMonitor has a field ObjectType and then fields for FilterPre and FilterPost. Thus for a
CustomMonitor, the ObjectType determines how the string for specifying the FilterPre and FilterPost is
interpreted. There are three ways to specify the filter string:

1. Enter a string that represents the name of the filter. This will look through all filters that share
the primary ObjectType.

2. Enter a string that starts with the name of a different object type (using an object type string
from Section 2.2) enclosed in < and >, followed by the name of a filter for the other object type.
For example, for a Custom Monitor, if ObjectType = Branch, then a filter string of "<BUS> My

21

FilterName" would signify that the branches should be filtered according to the bus filter
named “My FilterName”. When filtering across object types, all of the secondary object types
that apply to the primary object type are evaluated against the Filter and an OR logic is applied
so that if any of the secondary objects meets the filter then the primary object meets the filter.

3. When specifying a device filter, in the place that a filter name is to be expressed, simply enter
the following syntax "<DEVICE> Object ID String", where Object ID String is a string of
the same format as described in Section 2.3. A device filter works simply by choosing all of the
primary object types that are contained in the Device referenced. For example if the primary
object type is GEN, and the Device Filter is an Injection Group, then all generators that are inside
the injection group will meet the device filter.

4 Script Sections to Set Defaults

There are several data records in later sections (such as generators and buses in Sections 5.2 and 5.5)
that will generally have the same settings for all but a small number of exceptions. For instance,
generator line drop compensation is typically not used. So that we do not require 1,000s of file entries
to enumerate all the objects that use the default setting, the file format will permit the specification of a
special script command that sets all values for a particular object type.

This command will be placed inside of a special SCRIPT section enclosed in curly braces much the same
way as will be done with various data records below. The command will have the following syntax:

SetData(objecttype, [fieldlist], [valuelist], filter);

Objecttype will represent one of the strings referred to in Section 2.2. This will be followed by a list of
fields enclosed in square brackets. The fields will be the same ones described in Section 2.4. This will be
followed by a comma-delimited list of string containing values to assign to these fields; again enclosed in
square brackets. Each value should also be enclosed in double quotes. Finally a fourth parameter
should be specified as the string ALL to signify that these defaults should be applied to all objects of this
type. The fourth parameter could also be a filter or device filter using the format described in Section
3.4, but that will not be needed for any of the formats needed in this document.

For example, the following sections would set all the various default options for Bus and Generators
data records described in Section 5.2 and 5.5. Note that this can be done within only one SCRIPT section
or within many SCRIPT sections within the same text file.

SCRIPT
{
SetData(Gen, [CTGMaxResp], [-1.0], All);
}
SCRIPT
{
SetData(Gen, [CTGPreventAGC,CTGPartFact], ["NO","same"], All);
SetData(Gen, [UseLineDrop], ["NO"], All);
SetData(Bus, [CTGLoadThrow], [""], All);
}

22

5 Data Record Structures

There are many object type sections that will be needed for defining the data records necessary to
define contingencies and RAS.

The following data records are necessary for defining the solution options and how the behavior of
various objects is handled during a contingency solution:

• Area (settings for contingency modeling)
• Bus (settings for contingency modeling)
• Gen (settings for contingency modeling)
• CTG_Options_Value
• Sim_Solution_Options_Value

The following are necessary helper objects for defining the contingency records themselves:

• InjectionGroup, PartPoint
• ModelExpression
• ModelCondition, ModelConditionCondition
• ModelFilter, ModelFilterCondition

The following are records that define the action contingency records:

• Contingency, ContingencyElement,
• TSContingency, TSContingencyElement
• RemedialAction, RemedialActionElement

The following are data records necessary for defining how limits are monitored during the power flow
contingency analysis:

• LimitSet
• Area (settings for limit monitoring)
• Zone (settings for limit monitoring)
• Bus (settings for limit monitoring)
• Branch (settings for limit monitoring)
• Interface (settings for limit monitoring)
• Filter, Condition
• CustomMonitor

The basic file structure will allow defining object type sections and multiple object type sections may
appear in the same text file. In addition, an object type section can be repeated in the file if desired.
For example, it may be convenient to list settings for an Area record related to the solution options
separately from the options related to limit monitoring.

23

An object type section will be identified as a line of text that starts with its unique string which is defined
in Section 2.2. This will be followed by an open parenthesis, a comma-delimited list of field names, and
then a close parenthesis. The order in which the fields are listed in this comma-delimited list dictates the
order in which the fields will be read from the file. Including this header makes the file easier to read
and also allows for the format to grow as new fields may be needed as new features are needed for
software tools in the future. This takes a small part of the XML-inspired idea of having a self-defining
format, however it does not take it to the extreme which XML does by placing these field identifiers
around every individual field value. This header will appear once and there can then be any number of
records (a few or 10,000s) that follow the header and do not require repeated header strings.

Syntax rules regarding the list of field names are as follows:

• The list of field names may take up several lines of the text file
• The list of field names should be encompassed by parenthesis ()
• When encountering the comment string ‘//’ in one of these lines of the text file, all text to the

right is ignored but the parser will continue to read the list of fields on the next line of text
• Blank lines, or lines whose first characters are ‘//’ will be ignored and not read
• Field names must be separated by commas

The field names available for each object type are described in detail in the rest of the document. Note
that when a software package parses this list of fields it should NOT cause a fatal file read error if it runs
across a field name that is not recognized. Appropriate warning messages could be shown to the user
but it should just ignore those fields and respective values in the value lists. This document will specify
which fields are necessary for defining contingency and RAS related information only, but there is clearly
more information available in the software tools. The assumption is that any new fields added in the
future will represent optional new features for Contingency and RAS.

After the list of field names are terminated by a close parenthesis, a left curly brace { is used to signify
the start of data for this object type. Following this is a list of the values for the various fields for many
different objects. The values must be in the order specified in the list of field names header. To
terminate this object section a right curly brace } must be entered at the start line of a line of text.

Syntax rules for the list of values are as follows:

• The value list may take up several lines of the text file. The parser will just read values until it
has read the number of values specified in the list of field names.

• Each new data object must start on its own line of text (thus any extra values that may have
existed on the previous line of text will be ignored, though some warning messages are
recommended)

• When encountering the comment string ‘//’ in one of these lines of the text file, all text to the
right of this is ignored. Comments need not be stored by the software tools however.

• Blank lines, or lines whose first characters are ‘//’ will be ignored as comments.
• Remember that the right curly brace must appear on its own line at the end of the data list.

24

• Strings can be enclosed in double quotes, but this is not required. You should however always
enclose strings that contain spaces in double quotes. Otherwise, strings containing spaces
would cause errors in parsing because the values are space-delimited.

• The order in which the object records are read from inside of the same object type section will
NOT impact the result of reading that section. For some objects that can refer to other objects
of the same type this will require the parser to be sophisticated enough to handle this. For
example, Model Expression #1 may take the maximum value of Model Expression #2 and #3.
The file format specification does NOT require that Model Expression #2 and #3 appear in the
data section BEFORE Model Expression #1. There are many similar examples.

• The order in which the object type sections are read from the file however may impact the
result of reading the entire file. For example, if a Model Expression record refers to an Injection
Group, then that Injection Group needs to have been defined before the Model Expression.
Software tools may try to allow for these discrepancies to ease user interaction with these files,
but that is not required. The format assumes that the user is responsible for being careful.

Experienced users of PowerWorld Simulator may have a question about the dialogs that commonly
appear with PowerWorld Simulator asking if you would like to create a new object in your case. For this
modified format the assumption will always be that objects should be created.

A sample file section is shown as follows:

ObjectTypeString (fieldname1, fieldname2, fieldname3, fieldname4)
{
"Fields" "describing" "the" "object1"
"Fields" "describing" "the" "object2"
}
ObjectTypeString2 (fieldname1, fieldname2, fieldname3)
{
"Fields" "describing" // comment here
 "object1" // object 1 is spread across two lines of text then
"Fields" "describing" "object2"
}

5.1 Area (settings for contingency modeling)

Special area contingency options are entered to specify special post contingency solution modeling of
areas. The fields recognized by this object type are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the area using the object string in format specified in Section 2.3
CTGMakeupGen Set to a numerical value for area participation factor. See Section 5.7 on field

MakeUpPower for object type CTG_Options_Value.
A sample file section is shown as follows:

Area (ObjectID, CTGMakeupGen)
{
 "AREA 40" 0.80
 "AREA 50" 0.15
 "AREA 'PG AND E'" 0.35
 "AREA 'ALBERTA'" 0.05
}

25

5.2 Bus (settings for contingency modeling)

Special bus contingency options are entered to specify special post contingency solution modeling of
buses. The fields recognized by this object type are shown in the following table.

Field Description and Rules for Field
ObjectID Identifies the bus using the object string in format specified in Section 2.3
CTGLoadThrow If a bus becomes disconnected as a result of a contingency solution, all loads

at the bus will move over to this bus during the solution. Specifying a value of
blank means that this will not occur at all. A blank value is the default value.
The bus is identified using the object string in format specified in Section 2.3.

A sample file section is shown as follows:

Bus (ObjectID, CTGLoadThrow)
{
 "Bus 50" "Bus 52"
 "Bus 'Jackie43_345.00'" "Bus 'Jackie44_345.00'"
}

5.3 Voltage Control Group (settings for contingency modeling)

Special Voltage Control Groups are created to which switched shunts are assigned so that switching can
be properly coordinated during a contingency power flow solution. The following modification is made
to how switched shunt control is performed in the contingency power flow solution.

1. Process all the other shunts in each “Voltage Control Group” as follows
a. Determine the switched shunt that has the largest deviation below Vlow (call this shunt

“LowShunt”)
b. Determine the switched shunt that has the largest deviation above Vhigh (call this shunt

“HighShunt”)
c. Note: measure largest deviation in kV not per unit (thus regulated buses with a higher

nominal voltage have a higher precedence)
d. Note: Only switched shunts that are marked as Control Mode = Discrete participate in

these control groups. Any marked as Continuous, SVC, Fixed, or BusShunt will be
ignored and will not switch at all (including in Step 2 below)

e. If LowShunt was found, then move that switch shunt UP by one step
Else if HighShunt was found move this shunt DOWN by one step

2. Once all voltage control groups are processed simply perform the rest of the switched shunt as
has always been done, but ensure we don’t move any shunts that are part of a Voltage Control
Group.

The fields recognized by this object type are shown in the following table:

Field Description and Rules for Field
Name The name of the voltage control group
Status Status of the group. Set to one of the following three choices:

ON : This means that during the power flow solution, all shunts in this
voltage control group will use the modified control method. Note

26

that shunts will still be disabled if the global option for disabling
switched shunt control is chosen.

OFF : This means the shunts in the voltage control group default back to
their individual settings so the solution behaves as though the
voltage control group does not exit.

FORCEON : This works the same as ON, but will ignore the global option for
disabling the switched shunt control.

A sample file section is shown as follows:

VoltageControlGroup (Name, Status)
{
"My Group Name 1" "ON"
"My Group Name 2" "OFF"
"My Group Name 3" "FORCEON"
}

5.4 Shunt (settings for contingency modeling)

Special switched shunt contingency options are entered to specify groups of switched shunts that will
coordinate their switching during a power flow solution. The fields recognized by this object type are
shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the shunt using the object string in format of Section 2.3
VoltageControlGroup Name of the Voltage Control Group to which the shunt belongs.

A sample file section is shown as follows:

Shunt (ObjectID, VoltageControlGroup)
{
"Shunt 'Texan_69.0' '1'" "My Group Name 1"
"Shunt 'Viking_345' '1'" "My Group Name 1"
"Shunt 'Viking_345' '2'" "My Group Name 2"
"Shunt 'Jet_69.0' '1'" "My Group Name 2"
"Shunt 77 '1'" "My Group Name 3"
}

5.5 Gen (settings for contingency modeling)

Special generator contingency options are entered to specify post contingency solution modeling of
generators. The fields recognized by this object type are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the generator using the object string in format of Section 2.3
CTGPreventAGC Set to one of the following three choices:

Respond : Generator MW output will respond to changes during the
contingency power flow solution

YES : Generator MW output will not change
NO : Setting specified in the case will be used (the AGC field)

CTGPartFact Specifies a participation factor that will be used to determine the amount of
response from a generator relative to other generators. Specifying a value of

27

“same” will instruct the software to use the same participation factor as it
would normally use (will use the PartFact field of the generator).

CTGMaxResp Specify the maximum MW deviation allowed during the contingency power
flow solution. Value may be specified as a number of MW, or if the value
ends with the character % then the maximum MW response will be
calculated as this percentage of the maximum MW limit of the generator. A
blank or negative entry may also be specified to instruct that no special
maximum response be enforced (normal generator MW limits would still be
enforced regardless of this setting).

UseLineDrop Set to either YES, NO or POSTCTG.
NO : Use normal voltage control based on the regulated bus and

voltage setpoint.
YES : Use line drop compensation voltage control always, including

in the power flow solution.
POSTCTG : Use line drop compensation voltage control only during the

contingency power flow solution. When set to POSTCTG, the
Rcomp and Xcomp values and pre-contingency P and Q of the
generator will be used to calculate the pre-contingency
voltage of the compensated voltage and the generator will
operate to maintain the compensated voltage at a constant
during the contingency power flow solution. Also, if Rcomp
and Xcomp are near zero, instead of modeling line drop the
contingency processor will change the generator to regulate
its own terminal bus to the contingency reference state
value.

Rcomp Line Drop Compensation or Reactive Current Compensation resistance value
used during a contingency power flow solution. Value will be expressed in
per unit on the system MVA base. Negative values signify reactive current
compensation, while positive values signify line drop compensation.

Xcomp Line Drop Compensation or Reactive Current Compensation reactance value
used during a contingency power flow solution. Value will be expressed in
per unit on the system MVA base. Negative values signify reactive current
compensation, while positive values signify line drop compensation.

A sample file section is shown as follows:

Gen (ObjectID, CTGPreventAGC, CTGPartFact, CTGMaxResp, UseLineDrop, Rcomp,
Xcomp)
{
"Gen 'Texan_69.0' '1'" "NO" same 22.0 "NO" 0.0000 0.0001
"Gen 'Viking_345' '1'" "YES" 54.0 "11%" "NO" 0.0000 0.0123
"Gen 'Viking_345' '2'" "RESPOND" same 5.0 "PostCTG" 0.0000 -0.0500
"Gen 'Jet_69.0' '1'" "YES" 88.0 "" "PostCTG" 0.0000 0.0512
"Gen 77 '1'" "RESPOND" same 0.0 "NO" 0.0000 0.0001
"Gen 55 '1'" "NO" same "" "NO" 0.0000 0.0001
}

28

5.6 Sim_Solution_Options_Value

There is set of power flow solution options that impact the contingency solutions in a contingency
processor. Each power flow solution option (Sim_Solution_Options_Value) has a unique string identifier
and then a particular set of potential values associated with them. The field names for the object are
simply Option and Value. The following table shows a list of the string identifiers for each option and a
description of what the value should contain. These options may be overridden by contingency analysis
options as well, which are discussed in Section 5.7. Any file parser should simply ignore any options that
the tool does not recognize, need, or use. It should simply provide warning messages that the option is
not recognized, needed or used as appropriate.

Option Value
DynAssignSlack Set to YES to allow the contingency power flow solution to dynamically

assign new slack buses if new electric islands are created as a result of
switching in the contingency. Set to NO to not allow this (new islands will
be treated as dead).

PUConvergenceTol Floating point value of the convergence tolerance. Units are in per unit.
Thus to express a 0.02 MVA tolerance, if SBase = 100, then enter 0.0002.

MaxItr Integer for maximum inner power flow loop calculation iterations
MinVoltILoad Floating point for minimum PU Voltage for Constant Current Loads
MinVoltSLoad Minimum PU Voltage for Constant Current Loads Minimum PU Voltage

for Constant Power Loads
EnforceGenMWLimits Set to YES to enforce generator MW limits or NO to not enforce
MaxItrVoltLoop Integer for maximum voltage control loop calculation iterations

(generator Mvar checking, tap control, shunt control, etc.)
LTCTapBalance Set to YES to force parallel transformer taps to balance their tap ratios or

NO to leave them alone.
ChkPhaseShifters Set to YES to allow phase shifter control or NO to prevent it.
ChkSVCs Set to YES to allow SVC switched shunt control or NO to prevent it.
ChkShunts Set to YES to allow switched shunt control or NO to prevent it.
ChkTaps Set to YES to allow transformer tap ratio control or NO to prevent it.
ChkVarImmediately Set to YES to check generator Mvar limits after each inner power flow

loop iteration.
MinLTCSense Specify a floating point value representing the minimum transformer tap

sensitivity (derivative of control voltage with respect to change the tap
ratio). Transformers with a sensitivity below this value will not be moved.

ModelPSDiscrete Set to YES to model phase shifters as a discrete control or NO to allow the
phase shift angle to vary continuously between the minimum and
maximum angle.

PreventOscillations Set to YES to prevent controller oscillations.
ShuntInner Set to YES to model continuous switch shunts as PV buses in the inner

power flow loop.

A sample file section is shown as follows:

29

Sim_Solution_Options_Value (VariableName,Value)
{
"DynAssignSlack" "YES"
"DisableOptMult" "NO"
"MaxItr" "100"
"MinVoltILoad" "0"
"MinVoltSLoad" "0"
"AGCTolerance" "0.05"
"EnforceGenMWLimits" "YES"
"LTCTapBalance" "YES"
"ChkPhaseShifters" "YES"
"ChkSVCs" "YES"
"ChkShunts" "YES"
"ChkTaps" "YES"
"DisableGenMVRCheck" "NO"
"ChkVarImmediately" "NO"
"MaxItrVoltLoop" "20"
"MinLTCSense" "0.01"
"ModelPSDiscrete" "NO"
"PreventOscillations" "YES"
"ShuntInner" "YES"
}

30

5.7 CTG_Options_Value

Each contingency solution option has a unique string identifier and then a particular set of potential
values associated with them. The field names for the object are simply Option and Value. The following
table shows a list of the string identifiers for each option and a description of what the value should
contain. Any file parser should simply ignore any options that the tool does not recognize, need, or use.
It should simply provide warning messages that the option is not recognized, needed or used as
appropriate.

Option Value
TSModelsTrip Comma-delimited list of transient stability model types that will act or trip

in the contingency processor. See Section 5.7.1 for more details.
TSModelsMonitor Comma-delimited list of transient stability model types that will only be

monitored in the contingency processor. See Section 5.7.1 for details.
TSModelMaxDelay A number of seconds. See Section 5.7.1 for more details.
DisableGenDropOverlap There are particular ContingencyElement actions that open generators

within an injection group in merit order. If more than one contingency
element such as this is implemented in the same contingency, then there
may be overlap in the list of generators between the multiple injection
groups. Set this value to YES to treat these actions independently. Set this
value to NO to count any generation change in the first injection group to
count toward the total change desired in subsequent injection groups.

MakeUpPower Set to one of the following three choices
Area Part Factors

 : Specifies that changes in injection caused by the
contingency should be made up by the areas in the case in
proportion to the Area records CTGMakupGen factors (see
Section 5.1). Within each area, the individual participation
factors of generators on AGC determine how much power
will come from each generator.

Gen Part Factors
 : Specifies that changes in injection caused by the

contingency should be made up by the all generators in the
case in proportion to the individual participation factors of
generators on AGC.

Same as Power Flow

 : Specifies that changes in injection caused by the
contingency should be made up in the same way that the
regular power flow solution is configured to solve. This
option is not recommended.

AGCTolerance Specify the MW control loop solution tolerance in MWs

All of the Sim_Solution_Options_Value options presented in Section 5.6 may be overridden by a
contingency analysis specific option. Within the CTG_Options_Value records any of these values may be
specified as Default which will indicate that the option simply defaults to the global power flow
solution options shown in Section 5.6.

31

The following options are also available for the CTG_Options_Value object and represent advanced limit
monitoring settings that will ignore or report special limit violations based on a change monitored value
from the contingency reference case.

Option Value
MonDiscBus Set to YES to report as a violation any bus that becomes disconnected as a

result of a contingency. Set to NO to not do this.
VoltChangePercent Set to YES to treat following change values as a percentage change from the

contingency reference case. Thus if AlwaysLowVoltDec = 0.05 interpret this
as a 5% decrease from the reference case. Set to NO to treat voltage
changes as a per unit change, thus 0.05 means a 0.05 per unit change.

The following 5 options allow the specification of limit violations that should always be reported based
on a change in value from the contingency reference case, even if the value does not exceed the limits
AlwaysReport Set to YES to enable the following 4 options for always reporting violations

based on a change in value from the contingency reference case. Set to NO
to ignore these 4 options.

AlwaysBranchInc Specify a percentage. This is the minimum change in a branch flow in
percentage (of the post-contingency rating) that the loading on a branch
must increase so that the branch gets reported as a violation

AlwaysHighVoltInc Specify a per unit voltage change (interpretation is determined by field
VoltChangePercent). This is the minimum amount that a bus voltage must
increase for a bus high voltage violation to be reported

AlwaysInterfaceInc Specify a percentage value. This is the minimum change in interface flow in
percentage (of the post-contingency rating) that the loading on an interface
must increase so that the interface gets reported as a violation.

AlwaysLowVoltDec Specify a per unit voltage change (interpretation is determined by field
VoltChangePercent). This is the minimum amount that a bus voltage must
decrease for a bus low voltage violation to be reported.

The following 5 options allow the specification of limit violations that should never be reported based on
a change in value from the contingency reference case, even if the value does exceed the limits
NeverReport Set to YES to enable the following 4 options for never reporting violations

based on a change in value from the contingency reference case. Set to NO
to ignore these 4 options.

NeverBranchInc Specify a percentage value. This is the minimum change in percentage (of
the post-contingency rating) that the loading on a line/transformer must
increase before the line/transformer gets reported as a violation.

NeverHighVoltInc Specify a per unit voltage change (interpretation is determined by field
VoltChangePercent). This is the minimum change in a bus voltage that must
occur for bus high voltage violation to be reported.

NeverInterfaceInc Specify a percentage value. This is the minimum change in percentage (of
the post-contingency rating) that the loading on an interface must increase
before the interface gets reported as a violation.

NeverLowVoltDec Specify a per unit voltage change (interpretation is determined by field
VoltChangePercent). This is the minimum change in a bus voltage that must
occur for a bus low voltage violation to be reported.

32

A sample file section is shown as follows:

CTG_Options_Value (Option, Value)
{
"MakeUpPower" "Gen Part Factors"
"AGCTolerance" "0.05"
"DisableGenDropOverlap" "NO"
"TSModelsTrip" "LOCTI, TIOCRS, TIOCR1"
"TSModelsMonitor" "MSC1"
"TSModelMaxDelay" "3600"
"DynAssignSlack" "YES"
"PUConvergenceTol" "0.0002"
"MaxItr" "100"
"MinVoltILoad" "Default"
"MinVoltSLoad" "Default"
"EnforceGenMWLimits" "YES"
"MaxItrVoltLoop" "Default"
"LTCTapBalance" "YES"
"ChkPhaseShifters" "NO"
"ChkSVCs" "YES"
"ChkShunts" "NO"
"ChkTaps" "NO"
"DisableGenMVRCheck" "NO"
"ChkVarImmediately" "YES"
"MinLTCSense" "Default"
"ModelPSDiscrete" "NO"
"PreventOscillations" "YES"
"ShuntInner" "YES"
}

5.7.1 Using Transient Stability Dynamic Models in Steady State Contingency Analysis

Transient stability dynamic models can be handled in the steady state power flow environment when
appropriate. Obviously a generator stabilizer or exciter model will not be used in a steady state solution,
but some dynamic models specify behavior that occurs in the same time frame as steady state power
flow contingency solutions are meant to model (say between 60 seconds and several minutes).
Examples of whether different models may apply are as follows:

Models applicable to a Steady State
Power Flow Solution

Models not applicable to a Steady
State Power Flow Solution

• Over-Current Branch Relays
• Under/Over Voltage Relays for

Generators, Load, or Lines
• Switched Shunt Models
• Distance/Impedance Relays
• Under voltage motor tripping

specified with a motor
• Possibly Load Voltage-Dependent

Models

• Generator Stabilizer
• Generator Exciter
• Generator Machine Models
• Generator Governor Models

(might switch sides some day?)
• Load Motor Dynamic Models
• Over or Under Frequency Models

for Generators, Load, or Branches

33

An ability to optionally specify which types of dynamic models should be automatically handled in power
flow contingency analysis should be defined in the file format. This is handled by the special
contingency solutions options TSModelsTrip and TSModelsMonitor shown in the earlier table.

Transient stability model types that are listed in TSModelsTrip will model the steady state behavior of
the dynamic model and cause actions to occur if appropriate. For example, an over-current relay may
cause a transformer to open if the current exceeds the pickup threshold.

Transient stability model types that are listed in TSModelsMonitor will not cause actions to occur, but
the contingency processor will report if a dynamic model would have caused an action to occur. For
instance an over-current relay may report that the transformer would have tripped. This reporting
should be similar to reporting violations in any existing contingency analysis processor

When processing transient stability models listed in TSModelsTrip and TSModelsMonitor, any dynamic
model that would not respond within the time delay TSModelMaxDelay will be assumed to not act in
the power flow contingency processor. The default value is 3600 seconds (1 hour), so if a relay setting
had a time delay of 5000 seconds then it would not act in the power flow contingency processor. The
intent of the field TSModelMaxDelay is not to specify what time delays should be considered. Because
this is representing steady state analysis, we expect that any reasonable time delays would always be
reached. The intent of TSModelMaxDelay is to detect user settings in the transient stability models that
the user really intended to signify a “disabled” model. For example, a user may change a time delay to
9999 as a way to disable the model. That works fine in transient stability as you’d never run the
simulation that long. While it would be more appropriate to go to the stability model and disable the
model itself, the user may do what was just described instead. Thus our intent was to say any relay with
a time delay greater than 3600 seconds (1 hour) means the model should be ignored.

Note that any dynamic model that is not listed in either TSModelsTrip or TSModelsMonitor will simply
be ignored by the power flow contingency processor. This will be the default behavior of contingency
processors.

5.8 InjectionGroup and PartPoint

An InjectionGroup represents a collection of generators, loads, switched shunts, or other injection
groups. A primary purpose when modeling contingencies is to use an injection group to model
generator drop schemes. The fields recognized by the InjectionGroup object type are shown in the
following table.

Field Description and Rules for Field
Name Name of the Injection Group. There can be only one Injection Group with this

name.

Injection Groups are made up of any number of PartPoint objects. The fields recognized by the PartPoint
object type are shown in the following table:

34

Field Description and Rules for Field
GroupName Name of the Injection Group to which this PartPoint belongs
Object Identifies the object for this injection point using the object string in format

specified in Section 2.3. The object type must be either Gen, Load, Shunt or
InjectionGroup.

AutoCalcMethod Specifies how the participation factor of this object is determined. The
choices depend on the object type as shown below.
GEN

SPECIFIED : Set to the numerical value in field PartFact
MAX GEN MW : Set equal to the Maximum MW Output
MAX GEN INC : Set equal to the (Max MW – Present MW)
MAX GEN DEC : Set equal to the (Present MW – Min MW)
Field Name : Set equal to the value of this generator field. The

fields are the strings described in Section 2.4.
Model Expression Name : Set equal to the value of this Model

Expression.
LOAD

SPECIFIED : Set to the numerical value in field PartFact
LOAD MW : Set Equal to the Load MW
Field Name : Set equal to the value of this load field. The

fields are the strings described in Section 2.4.
Model Expression Name : Set equal to the value of this Model

Expression.
SHUNT

SPECIFIED : Set to the numerical value in field PartFact
MAX SHUNT MVAR : Set equal to the Maximum Mvar
MAX SHUNT INC : Set equal to the (Max Mvar – Present Mvar)
MAX SHUNT DEC : Set equal to the (Present Mvar – Min Mvar)
Field Name : Set equal to the value of this shunt field. The

fields are the strings described in Section 2.4.
Model Expression Name : Set equal to the value of this Model

Expression.
INJECTIONGROUP

SPECIFIED : Set to the numerical value in field PartFact
Field Name : Set equal to the value of this injection group

field. The fields are the strings described in
Section 2.4.

Model Expression Name : Set equal to the value of this Model
Expression.

PartFact Present numeric value for the participation factor. It may be automatically
recalculated based on the AutoCalcMethod and AutoCalc fields.

AutoCalc Set to YES to specify that the participation factor value should be
automatically recalculated before every use of the injection group based on
the AutoCalcMethod. If set to NO, the PartFact should be specified.

A sample file section is shown as follows:

35

InjectionGroup (Name)
{
"Boundary Generators"
"Bridger Generators"
}
PartPoint (GroupName, Object, AutoCalcMethod, PartFact, AutoCalc)
{
"Boundary Generators" "GEN 46464 51" "MAX GEN MW" 50 "YES"
"Boundary Generators" "GEN 46466 52" "MAX GEN MW" 50 "YES"
"Boundary Generators" "GEN 46468 53" "MAX GEN MW" 50 "YES"
"Bridger Generators" "GEN 65386 1" "SPECIFIED" 557.00 "NO"
"Bridger Generators" "GEN 65387 1" "SPECIFIED" 557.00 "NO"
"Bridger Generators" "GEN 65388 1" "SPECIFIED" 557.00 "NO"
"Bridger Generators" "GEN 65389 1" "SPECIFIED" 557.00 "NO"
}

5.9 ModelExpression

ModelExpressions are mathematical expressions evaluated from one or more system parameters. For
example, they would be used to model a RAS arming lookup table and as part of other RAS conditions.
The fields recognized by the ModelExpression object type are shown in the following table:

Field Description and Rules for Field
Name Name of the Model Expression contained in double quotes. This

field is the unique identifier for the Model Expression.
Type Either Expression or Lookup

For Expression types, up to 8 variables may be specified by the
fields defined by field names x1 through x8.
If the Lookup type is used, then the field defined by field name x1
will represent the field used for a 1D lookup. For a 2D lookup the
fields are defined by x1 and x2

Expression When expression type is Expression then this represents the
function of up to 8 variables. The expression should be written
using the variable names x1, x2, x3, x4, x5, x6, x7, and x8.
The functions supported by the Expression String are listed in
Section 5.9.2.

Memo Extra string enclosed in quotes
Object1, Object2, Object3,
Object4, Object5, Object6,
Object7, Object8

There are 8 objects strings specify the object using the format
described in Section 2.3.

x1, x2, x3, x4,
x5, x6, x7, x8

There are 8 field names which represent the field for a particular
object using the convention described in Section 2.4.

BlankZero1, BlankZero2,
BlankZero3, BlankZero4,
BlankZero5, BlankZero6,
BlankZero7, BlankZero8

These values determine how blank values should be treated for the
8 fields. If BlankZero1 is YES then a value for Object1:x1 which is
blank will be evaluated as though Object1:x1 is a zero. If
BlankZero1 is NO then a blank value for Object1:x1 will result in the
entire expression evaluating to blank (invalid).
(Note: omitting this value will result in a default of NO)

36

5.9.1 Lookup Tables

Lookup tables allow returning a value from a lookup based on the value of the specified x1 and/or x2
fields instead of specifying a mathematical expression.

The ModelExpression requires a special feature in the file format to handle the specification of a lookup
table. This is done by using special tags to surround the lookup table specification. The lookup table is
initiated by the tag <SUBDATA LookupTable> and then terminated by the tag </SUBDATA> . The
formatting inside the tags is described as follows.

A lookup table represents either one or two dimensional tables (1D or 2D). This is determined by
reading the first string in the first row inside the SUBDATA section. If the first text row inside the
SUBDATA section starts with the string “x1x2”, this signifies that this represents a two dimensional
lookup table, otherwise it signifies a one-dimensional lookup table.

For 2D lookup tables, from that first string it will read the remainder of the numerical entries in the first
row as x2 lookup points, the first column in the remainder of the rows as the x1 lookup points, and the
subsequent entries as the various result values for the lookups for respective values of x1 and x2. The
lookup value that is returned from the lookup is the intersection of the present values of fields x1 and x2
in the table where both values are less than or equal to the lookup points.

For 1D tables the remainder of the first line of the SUBDATA section is ignored and in the following rows
the first entry represents x1 lookup points while the second value represents the lookup value. The
value that is returned from the table is the lookup value where the present value of x1 is less than or
equal to the lookup point.

A sample file section is shown as follows:

ModelExpression (Name, Type, Expression, Memo, Object1, x1, Object2, x2)
{
"Gen Drop Table 1" "Lookup" "" "Memo Str" "Interface 'My Int Name1'" "MW" "" ""
 <SUBDATA Lookup>
 // because it does not start with the string x1x2 this will
 // represent a one dimensional lookup table
 x1 Value // first row is ignored
 2700 0
 2900 500
 3200 1100
 4400 1700
 4800 1700
 </SUBDATA>
"Gen Drop Table 2" "Lookup" "" "Memo String Here"
 "Interface 'My Int Name1'" "MW" "Interface 'My Int Name2'" "MW"
 <SUBDATA Lookup>
 // because this starts with x1x2 this represent a two dimensional
 // lookup table. The first row represents lookup values for x2
 // The first column represents lookup values for x1.
 x1x2 1500 1600 1800 2000 2200 2400 2600 2800 3000 3100
 1900 0 0 0 0 0 0 0 0 0 0
 2000 0 0 0 0 0 0 0 0 0 600
 2200 0 0 0 0 0 0 0 0 600 600
 2400 0 0 0 0 0 0 0 600 900 900
 2600 0 0 0 0 0 0 600 900 900 900
 2800 0 0 0 0 0 600 900 900 900 1200

37

 3000 0 0 0 0 600 900 900 900 1500 1800
 3200 0 0 0 600 900 900 900 1500 2100 2400
 3400 0 0 600 900 900 900 1500 2100 2700 2850
 3600 0 600 900 900 900 1500 2100 2700 2850 2850
 3800 0 900 900 900 1500 2100 2600 2800 2850 2850
 4000 0 900 900 1500 2100 2400 2600 2800 2850 2850
 4200 0 900 1500 2000 2200 2400 2600 2800 2850 2850
 4400 0 1500 1800 2000 2200 2400 2600 2800 2850 2850
 4600 0 1600 1800 2000 2200 2400 2600 2800 2850 2850
 </SUBDATA>
// remember that the list of 8 fields can be spread across multiple lines
"Gen Drop Armed" "Expression" "-max(x1,x2)" "Memo String Here"
 "ModelExpression 'Gen Drop Table 1'" "Expression" // Object1 x1
 "ModelExpression 'Gen Drop Table 2'" "Expression" // Object2 x2
}

5.9.2 Functions Available for Expression String

The functions available for use inside the Expression strings are as follows. Note that trigonometric
functions are all in radians.

Function Description Example Function Description Example
() Prioritizes an expression 5*(1+1) = 10 SIN Sine sin(pi) = 0
FACT Factorial 5! = 120fact(5) =

120
 COS Cosine cos(pi) = -1

^ Raised to the power of 4 ^ 5 = 1024 TAN Tangent tan(pi) = 0
* Multiply by 3 * 6 = 18 ASIN Arc sine asin(1) = 1.570
/ Divide by 9 / 2 = 4.5 ACOS Arc cosine acos(-1) = 3.14
DIV Integer divide by 9 div 2 = 4 ATAN Arc tangent atan(0) = 0
MOD Modulo (remainder) 7 mod 4 = 3 SEC Secant sec(0) = 1
+ Add 1 + 1 = 2 CSC Cosecant csc(1) = 1.18
- Subtract 9 - 5 = 4 COT Cotangent cot(1) = 0.642
> Greater than 9 > 2 = 1 SINH Hyperbolic sine sinh(3) = 10.01
< Less than 7 < 4 = 0 COSH Hyperbolic cosine cosh(2) = 3.76
== Equal test 5 == 4 = 0 TANH Hyperbolic tangent tanh(1) = 0.76
>= Greater or equal 3 >= 3 = 1 COTH Hyperbolic cotangent coth(1) = 1.31
<= Less or equal #h3E <= 9 = 0 SECH Hyperbolic secant sech(0) = 1
<> Not equal #b10101 <> 20 = 1 CSCH Hyperbolic cosecant csch(1) = 0.85
NOT Bitwise NOT NOT(15) = -16 ASINH Hyperbolic arc sine asinh(2) = 1.44
AND Bitwise AND #b101 AND #h1E=4 ACOSH Hyperbolic arc cosine acosh(9) =

2.89
OR Bitwise OR 13 OR 6 = 15 ATANH Hyperbolic arc tangent atanh(.1) =

0.10
XOR Bitwise Exclusive OR 9 XOR 3 = 10 ACOTH Hyperbolic arc cotangent acoth(7) = 0.14
IIF If condition IIf(1+1==2,4,5) = 4 ASECH Hyperbolic arc secant asech(.3) =

1.87
MIN Minimum value min(10,3,27,15) = 3 ACSCH Hyperbolic arc cosecant acsch(2) = 0.48
MAX Maximum value max(1,9)=9 EXP e to the power of exp(3) = 20.08
ABS Absolute value abs(-8) = 8 EXP2 2 to the power of exp2(3) = 8
CEIL Round up ceil(6.2) = 7 EXP10 10 to the power of exp10(3) =

1000
RND Random number rnd(1) = .969 LN Natural log ln(16) = 2.77
INT Truncate to an integer int(6.8) = 6 LOG2 Log base 2 log2(8) = 3
SGN Sign of expression (-1,

0,or1)
sgn(-9) = -1 LOG10 Log base 10 log10(100) = 2

SQRT Square root sqrt(64) = 8

38

5.10 ModelCondition and ModelConditionCondition

ModelConditions are used to specify the conditions under which a contingency or RAS action should be
performed or armed.

The fields recognized by the ModelCondition object type are shown in the following table.

Field Description and Rules for Field
Name Name of the Model Condition contained in double quotes. Note: Names

must be unique across all other ModelFilters and ModelConditions.
Object The object to which the condition applies. Specify the object using the

format described in Section 2.3.
FilterObjectType Most commonly, the list of ModelConditionConditions that apply to this

ModelCondition are evaluated against the object referred to by Object.
However, it is also possible to specify a different object type for the
ModelConditionConditions. For example a BUS may be specified in the
Object, but FilterObjectType may be set to BRANCH. If this is done then
the Model Condition will evaluate to TRUE if any BRANCH connected to
the bus meets the logic of the ModelConditionConditions. These inherent
inter-object relationships are available for the object types enumerated in
Section 2.2

FilterLogic Logic to apply to the list of comparisons (AND, OR, NAND, NOR)
EvaluateInRef Specify as YES to cause the model condition to evaluate itself in the

reference case and never reevaluate during a contingency solution
DisableIfTrueInRef specify as YES to disable this model condition for the entire contingency

run if it evaluated TRUE in the reference (this is used so that a model
condition can be created that checks the status of a branch being opened,
but you want to restrict it to triggering an event only when the branch is
opened as a RESULT of the contingency). (See Model Filter explanation in
Section 5.11.1).

Memo Extra string enclosed in quotes
ModelConditions are made up of any number of ModelConditionCondition objects (apologies for the
object type name, but nothing else makes sense). The fields recognized by the ModelConditionCondition
object type are shown in the following table.

Field Description and Rules for Field
ModelCondition Name of the ModelCondition to which this applies
CondNum Number specifying the number of the condition. Omitting this value, or

specifying a value of zero will cause this to automatically add the condition
to the existing ModelCondition. Otherwise by specifying a number you can
edit existing conditions.

ObjectField A field associated with the object to which this model condition applies. A
list of fields is shown in Section 2.4. In addition to these fields, you may also
specify the string "_UseAnotherFilter" to signify that this condition refers
to another Filter. This will be important for the creation of more complex
nested filter definitions as described in Section 3.2.

ConditionType The comparison operator applied to the ObjectField and the Value and
OtherValue entries. There are many choices as follows:

39

 = equal (should not use for numbers)
 <> not equal
 > greater than
 < less than
 >= greater than or equal
 <= less than or equal
Integer comparisons
 inrange enter a string as the Value of the form "2-5, 70-90”
 notinrange enter a string as the Value. Opposite of inrange

String Comparisons
 contains returns whether string contains a particular substring
 notcontains opposite of contains
 startswith returns whether a string starts with a string
 notstartswith opposite of startswith
Two value comparisons
 about specify two values. Return whether the field is within

the OtherValue (tolerance) of the Value
 notabout specify two values. Opposite of about
 between specify two values field is between
 notbetween specify two values field is not between
_UseAnotherFilter comparisons
 Meets returns whether another filter’s conditions are met
 Not Meets returns whether another filter’s conditions are not met

Value

Value or Field or Expression. The entry specifies the value to which the field
is compared. This may be done in three ways
Value : 1.459 or a String
Field : start with the tag <Field> and then follow with a string

using the format as the ObjectField string
Model Expression : start with the tag <Expression> and then follow the

name of the Model Expression
OtherValue This entry’s format is the same as the previous entry. It is only used for the

between, notbetween, about, and notabout Condition Types
Absolute Set to YES to take the absolute value of the ObjectField begin compared

A sample file section is shown as follows:

ModelCondition (Name, Object, FilterObjectType, FilterLogic, EvaluateInRef,
 DisableIfTrueInRef, Memo)
{
"2-11 Line (Open)" "Branch 2 11 1" "Branch" "AND" "YES" "YES" "check 2-11"
"3-44 Line (Open)" "Branch 3 44 1" "Branch" "AND" "YES" "YES" "check 3-44"
"Interface Bobby High" "Interface 'Bobby'" "Interface" "AND" "NO" "NO" "checkbobby"
"Bus Jackie Low" "Bus 'Jackie_500.00'" "Bus" "AND" "NO" "NO" "checkJackie"
"Sample Field and Exp" "Gen 'Jackie_34.50' '1'" "Gen" "AND" "NO" "NO" "checkJackie"
}
ModelConditionCondition (ModelCondition, CondNum, ObjectField, ConditionType,
 Value, OtherValue, Absolute)
{
"2-11 Line (Open)" "1" "DerivedOnline" "=" "Closed" "" "NO"

40

"3-44 Line (Open)" "2" "DerivedOnline" "=" "Closed" "" "NO"
"Interface Bobby High" "3" "MW" ">" 500 "" "NO"
"Interface Bobby High" "4" "Mvar" ">" 100 "" "NO"
"Bus Jackie Low" "5" "V" "<" 0.95 "" "NO"
"Sample Field and Exp" "6" "MW" ">" "MWMax" "" "NO"
"Sample Field and Exp" "7" "Mvar" ">" "Expression 'Mvar Lim'" "" "NO"
}

5.11 ModelFilter and ModelFilterCondition

ModelFilters are used to specify the conditions under which a contingency or RAS action should be
performed or armed. They are useful for combining ModelConditions and other ModelFilters.

Field Description and Rules for Field
Name Name of the Model Filter contained in double quotes. Note: Names must be unique

across all other model filters and model conditions.
Logic Logic to apply to the list of comparisons (choices are AND, OR, NAND, and NOR)
Memo Extra string enclosed in quotes

ModelFilters are made up of any number of ModelFilterCondition objects. The fields recognized by the
ModelFilterCondition object type are shown in the following table:

Field Description and Rules for Field
ModelFilter Name of the Model Filter to which this applies
CondNum Number specifying the number of the condition. Omitting this value, or

specifying a value of zero, will cause this to automatically add the condition to
the existing ModelCondition. Otherwise you can edit existing conditions.

Criteria Name of a Model Filter or Model Condition in double quotes.
TimeDelay Time delay in seconds. Represents the length of time that the Criteria must

remain TRUE for the ModelFilterCondition to be considered to evaluate to true.
When a ModelFilter is evaluated along with returning a boolean result, for TRUE
results it will also return the TimeDelay required to achieve a TRUE result. The
use of this field is described in Section 5.11.2

Logic Value is either NOT or blank
"NOT" : Treat logic as TRUE if it does NOT meet the Model Condition or Filter
blank : Treat logic as TRUE if it does meet the Model Condition or Filter

A sample file section is shown as follows:

ModelFilter (Name, Logic, Memo)
{
"One is Out" "OR" "Either 3-44 or 2-11 go out"
"Bobby Up and Jackie Down" "AND" "test on Bobby and Jackie"
}
ModelFilterCondition (ModelFilter, CondNum, Criteria, Logic, TimeDelay)
{
"One is Out" 1 "3-44 Line (Open)" "" 5.0
"One is Out" 2 "2-11 Line (Open)" "" 3.0
"Bobby Up and Jackie Down" 1 "Interface Bobby High" "" 0.0
"Bobby Up and Jackie Down" 2 "Bus Jackie Low" "NOT" 0.0
}

41

5.11.1 Handling DisableIfTrueInRef for ModelFilterConditions

When the DisableIfTrueInRef field is set to YES for a ModelCondition that is used in a
ModelFilterCondition and the condition is true in the contingency reference case, that ModelCondition
will be ignored when evaluated as part of the ModelFilter. This means it will be evaluated to neither
true nor false but instead will be treated as if it doesn’t exist in the ModelFilter. If all
ModelFilterConditions are ignored for the ModelFilter, the entire ModelFilter will be ignored.

For example, if a ModelFilter contains three conditions for three different branches being opened: Line
A, Line B, AND Line C. Also, the ModelFilter is configured to be true if ALL of the branches are opened. If
all three conditions are defined with DisableIfTrueInRef set to YES and Line A is out in the contingency
reference state, the ModelFilter will be evaluated by checking only Line B AND Line C because the Line A
condition has been ignored. If all three lines are out in the contingency reference case, the ModelFilter
will be treated as if it doesn’t exist and the contingency or RAS action using this ModelFilter will NOT be
applied.

5.11.2 Calculated Time Delay of a Model Filter

A TimeDelay must be calculated for any ModelFilter that has ModelFilterConditions that use
TimeDelays. The calculated time delay of a ModelFilter will depend on the logic of the gate (OR, AND,
NOR, NAND) and the various TimeDelays in the logic diagram. The calculation occurs as follows.

Each input ModelFilterCondition will determine its own calculated time delay based on whether the
Criteria object is a ModelFilter or a ModelCondtion. We will call that the InputTimeDelay.

Criteria Object InputTimeDelay for the ModelFilterCondition
ModelFilter Use the summation of the Calculated Time Delay of the ModelFilter

and the TimeDelay associated with this ModelFilterCondition
ModelCondition Directly use TimeDelay associated with this ModelFilterCondition

With these InputTimeDelays, the ModelFilter’s calculated time delay is then determined based on the
Logic of the ModelFilter.

Gate Logic Calculated Time Delay
AND The maximum InputTimeDelay associated with any of the TRUE

ModelFilterCondition inputs
OR The minimum InputTimeDelay associated with any of the TRUE

ModelFilterCondition inputs
NAND The minimum InputTimeDelay associated with any of the FALSE

ModelFilterCondition inputs
NOR The maximum InputTimeDelay associated with any of the FALSE

ModelFilterCondition inputs

To illustrate this, consider the following example logic diagram. The yellow filled boxes represent
ModelCondition objects. The orange filled logic gates represent ModelFilter objects. The Blue boxes
represent ModelFilterCondition objects. Also note that some of the ModelFilterCondition objects have
NOT logic associated with them.

42

That same logic diagram and color code it with green representing TRUE, red representing FALSE, and
grey representing disabled . The calculation of time delay is then shown in the figure with blue text.

MFA

MFB

MC1

MC3

MC2

MFCA1
(10 sec)

MFCA2
(30 sec)
MFCA3
(50 sec)

MC4 MFCB2
(10 sec)

MC5 MFCB3
(20 sec)

MFCB1
(40 sec)

MFC

MC7

MC6

MFCC1
(5 sec)

MFCC2
(10 sec)
MFCC3
(15 sec)

NOT

AND Gate

OR

NAND Gate NOT

W

X
(10 sec)

Z

Y
(5 sec)

Legend

ModelCondition “W”

ModelFilterCondition “Y”
5 second delay, NOT

ModelFilter

ModelFilterCondition “X”
10 second delay

MFA

MFB

MC1

MC3

MC2

MFCA1
(10 sec)

MFCA2
(30 sec)
MFCA3
(50 sec)

MC4 MFCB2
(10 sec)

MC5 MFCB3
(15 sec)

MFCB1
(5 sec)

MFC

MC7

MC6

MFCC1
(8 sec)

MFCC2
(30 sec)
MFCC3
(5 sec)

30 sec

23 sec

15 sec

35

15

23

30

5

AND gate, so take the maximum TRUE time delay

Use 35 because it is the summation
of the the TimeDelays

10

OR gate, so take the minimum
TRUE time delay

NAND gate, so take the
minimum FALSE time delay

Use 23 because it is the
summation of the TimeDelays

Do not use 5 because that is a TRUE input

MC3 is Disabled
MC3 was set to
DisableIfTrueInRef

43

5.12 Relationships between objects

The following figure shows the following object types

ModelCondition For one model object, defines a boolean operation across a
list of ModelConditionCondition objects

ModelConditionCondition One boolean operation on the object contained in the
ModelCondition. This may also point to a ModelExpression
object

ModelFilter Defines a boolean operation across a list of
ModelFilterCondition objects

ModelFilterCondition Object is contained in a ModelFilter and references either a
ModelFilter or ModelCondition

ModelExpression An object describing a mathematical expression or lookup
table for the system.

ContingencyElement The ModelCriteria field may reference either a
ModelCondition or a ModelFilter
The Action field may reference a ModelExpression

5.13 Contingency, ContingencyElement
(TSContingency, TSContingencyElement)

Presently there are two separate data structures for storing power flow contingencies as compared to
transient stability contingencies.

44

1. Power Flow Contingency (Contingency/ContingencyElement)
2. Transient Stability Contingency (TSContingency/TSContingencyElement)

While separate data structures within the software environment, they are very similar and will be
described together with differences noted. The fields recognized by the Contingency (or TSContingency)
object type are shown in the following table.

Field Description and Rules for Field
Name Unique Name of the Contingency (or TSContingency)
Category A comma delimited list of strings representing the contingency categories assigned

to this contingency. For power flow contingencies, these categories will be used in
conjunction with the CustomMonitor object described in Section 8.7. For transient
stability contingencies, these categories could be used for additional limit
monitoring features.

Skip Set to NO and the contingency will be processed by a contingency analysis tool.
Set to YES and a contingency processor will ignore this contingency.

Memo Text field that can be used to provide comments attached to the contingency
Each Contingency object is made up of any number of ContingencyElement objects, while
TSContingency objects are made up of TSContingencyElement objects. The fields recognized by the
ContingencyElement and TSContingencyElement object types are shown in the following table (Time is
only available for the TSContingencyElement):

Field Description and Rules for Field
Contingency Name of the contingency (or TSContingency) to which this element belongs
Object Identifies a power system or simulation element specified using the object

string in format specified in Section 2.3. There are minor exceptions to this
format described in Section 5.13.1.

Action A string describing this action.
There are many options as shown in the following Section 5.13.4

Criteria Name of either a ModelCondition or a ModelFilter that determines the
situation under which the action will actually be implemented. The point at
which this model criteria is evaluated will depend on the CriteriaStatus as well
as whether this contingency is used for Power Flow Contingencies or Transient
Stability Contingencies.

CriteriaStatus Set to either Always, Never, Check, TopologyCheck or PostCheck
Details are explained in Section 5.13.2.
For Transient Stability Elements, the choices are either Always, Never, or CHECK

Persistent A YES or NO field. Any action that has Persistent set to YES and also has the
CriteriaStatus field set to POSTCHECK or TOPOLOGYCHECK will be applied in the
appropriate section of the overall contingency process any time that its Criteria
is met.

Comment Text field that can be used to provide comments attached to the element
Time Time at which the defined Action takes place specified in a real number in

seconds. This field is only defined for the Transient Stability Elements as
presently the time has no impact meaning in the Power Flow Contingency.

TimeDelay Time delay to wait before the defined Action takes place specified in a real
number in seconds (see note below when using a ModelFilter). This is NOT an

45

absolute time at which an action occurs, but serves as a relative ordering for
the implementation of actions. Actions with the smallest time delay will be
applied first during the TOPOLOGYCHECK and POSTCHECK solution steps. This
field is only defined for the Power Flow Contingency Elements.

When a ContingencyElement’s Criteria refers to a ModelCondition, then this
TimeDelay will be used directly. When a ContingencyElement’s Criteria refers
to a ModelFilter, then the Time Delay used will be the summation of the
ContingencyElement’s TimeDelay and the Calculated Time Delay of a Model
Filter. For more information on how a ModelFilter’s Calculated Time Delay is
determined see Section 5.11.2.

A sample file section is shown as follows:

Contingency (Name, Category, Skip, Memo)
{
"L-2_Roughrider-Raven 2&3" "Double" "NO" "My Memo A"
"L-2_Roughrider-Raven 1&2" "Double" "NO" "My Memo A"
"L_Falcon-PatriotC1" "Single" "NO" "My Memo A"
"T_Falcon-TitanC1" "Single" "NO" "My Memo A"
}
ContingencyElement (Contingency, Object, Action, Criteria, CriteriaStatus,
TimeDelay, Comment)
{
"L-2_Roughrider-Raven 2&3" "BRANCH 15 54 2" "OPEN" "" "CHECK" 0 ""
"L-2_Roughrider-Raven 2&3" "BRANCH 15 54 3" "OPEN" "" "CHECK" 0 ""
"L-2_Roughrider-Raven 1&2" "BRANCH 15 54 1" "OPEN" "" "CHECK" 0 ""
"L-2_Roughrider-Raven 1&2" "BRANCH 15 54 2" "OPEN" "" "CHECK" 0 ""
"L_Falcon-PatriotC1" "BRANCH 10 13 1" "OPEN" "" "CHECK" 0 ""
"T_Falcon-TitanC1" "BRANCH 10 39 1" "OPEN" "" "CHECK" 0 ""
}

TSContingency (Name, Category, Skip, Memo)
{
"Double Outage" "ReallyBad" "NO" "My Memo W"
"Fault Short" "NotSoBad" "NO" "My Memo X"
"Fault Long" "ReallyBad" "NO" "My Memo Y"
"Fault Near DC" "NotSoBad" "NO" "My Memo Z"
}

TSContingencyElement (Contingency,Time,Object,Action,Criteria,CriteriaStatus,Comment)
{
"Double Outage" 0.50 "Gen 14931 '1'" "OPEN" "" "ALWAYS" ""
"Double Outage" 0.50 "Gen 14932 '1'" "OPEN" "" "ALWAYS" ""
"Fault Short" 0.50 "Bus 'ROSS_345'" "FAULT 3PB SOLID" "" "ALWAYS" ""
"Fault Short" 0.60 "Bus 'ROSS_345'" "CLEARFAULT" "" "ALWAYS" ""
"Fault Long" 0.50 "Bus 'ROSS_345'" "FAULT 3PB SOLID" "" "ALWAYS" ""
"Fault Long " 1.50 "Bus 'ROSS_345'" "CLEARFAULT" "" "ALWAYS" ""
"Fault Near DC" 0.50 "Bus 'MONA_345'" "FAULT 3PB SOLID" "" "ALWAYS" ""
"Fault Near DC" 0.60 "Bus 'MONA_345'" "CLEARFAULT" "" "ALWAYS" ""
}

5.13.1 Special Treatment for ContingencyElement Object Field

For the GEN, LOAD, and SHUNT actions of CHANGEBY, SETTO, and MOVETO, there is one minor feature related
to specifying the Object of the contingency element. If the id is omitted from the object string, then the
action will apply to all the objects at the bus instead of a specified gen, load or shunt. As an example,

46

"GEN 56 '1'" will apply to a specific generator, while "GEN 56" will apply to all generators at the
specific bus instead.

When writing out a BRANCH action for OPEN or CLOSE, if the branch is one of the sections of a multi-
section line, instead of writing out the FROM and TO Bus identifiers for the specific section in the key
field identifiers, write out the FROM and TO bus identifier for the terminal of the multi-section line.
When reading in the file, if the specific BRANCH is not found, then the file parser should search for
multi-section lines instead.

5.13.2 Criteria Status

Specifies the point during the solution process at which the Criteria (ModelCondition or ModelFilter) is
evaluated. For power flow contingency solutions it has the following interpretation

Always : Means to ignore the Criteria and always do the action
Never : Means to ignore the Criteria and never do the action
Check : Means to evaluate the Criteria in the reference (base) case and implement the

action before a power flow solution is attempted
TopologyCheck : The Criteria will be evaluated after Check and Always actions are applied but

BEFORE the power flow solution. The Criteria can evaluate system conditions
related to topology changes even before the power flow solution is attempted.

PostCheck : This Criteria will be evaluated AFTER all Check, Always, and TopologyCheck
actions have been performed and AFTER the power flow solution is solved

47

For Transient Stability Contingency Elements it has the following interpretation

Always : Means to ignore the Criteria and always do the action
Never : Means to ignore the Criteria and never do the action
Check : Means to evaluate the Criteria in the initial condition and implement the action

at the specified time during the simulation if the condition is met. This is
intended to evaluate a pre-contingency RAS arming condition to determine
whether something should be done.

5.13.3 Calculated Time Delay

When a ContingencyElement refers to a ModelFilter, then the Calculated Time Delay used for the
Criteria will be a function of both the TimeDelay of the ContingencyElement and any TimeDelays
associated with a ModelFilterCondition. The combination of the logic and time delay must be done
appropriately so that the evaluation of a ModelFilter will now have both a TRUE/FALSE flag associated
with it and a “calculated time delay”. The calculated time delay of a ModelFilter will depend on the
whether it is an OR or an AND gate. For an OR gate, the calculated time delay will be equal to the
minimum Time Delay associated with any of the ModelFilter’s TRUE inputs. For an AND gate, the
calculated time delay will be equal to the maximum Time Delay associated with any of the ModelFilter’s
TRUE inputs. (Note: remember that inputs to a ModelFilter can either be TRUE, FALSE or DISABLED).

5.13.4 Contingency Actions

Each object type has a unique set of actions that are available to be applied to the object. The actions
available are listed in following tables. We recognize that there may need to be some additions to this
list, but this document provides a list of all actions presently available in PowerWorld Simulator. Also
remember that the power flow and transient contingencies are separate data structures. The columns
in the table are as follows:

1. First column shows the syntax for this action for transient stability contingencies
2. Second column shows the syntax for this action for power flow contingencies
3. Third column describes what the action means. If an action is not presently applicable, then the

first or second column will show “not applicable”.

It should be noted that in many simple cases such as OPEN and CLOSE actions the syntax is the same
between the transient stability and power flow contingency elements, but for others they may differ.

Experienced PowerWorld Simulator users may notice that the syntax for the power flow contingencies
has been modified and simplified for Simulator Version 18. The old syntax will remain in use and we will
maintain forward and backward compatibility. Essentially the new format will form a “secondary key”
for the contingency elements. This newer syntax is both simpler for PowerWorld Simulator users and
will be easier for other software vendors to parse than our old syntax. The new syntax splits the object
and action fields which were previously combined.Many of the actions specify a 'value' string. For
power flow contingencies only, this value may be expressed in three ways:

1. A numerical value that will be used directly. The single quotes are not necessary in this case.

48

2. The name of a field of the object (such as described in Section 2.4) in which case that value will
be evaluated and used. By appending the word REF at the end of the action string you may also
instruct that the field be evaluated in the contingency reference case. Otherwise the value will
be evaluated at the moment the action is implemented.

3. The name of a Model Expression. The result of the model expression will then be evaluated and
used. By appending the word REF at the end of the action string you may also instruct that the
model expression be evaluated in the contingency reference case. Otherwise the value will be
evaluated at the moment the action is implemented.

49

Table 1: Branch Actions (Applies to both Transmission Lines and Transformers)
Transient Stability Syntax Power Flow Syntax Description and Required Elements
FAULT 50.0 3PB SOLID
FAULT 50.0 SLG SOLID
FAULT 50.0 3PB IMP 0.02 0.06
FAULT 50.0 3PB ADM 0.02 0.06

not applicable Applies a fault at a specified distance on the branch. Starts with
the word FAULT followed by the following parameters
Percentage : value representing the location along the branch

(For transformer objects this is ignored and values
less than 50 are rounded to the NEAR end while
values larger than 50 are rounded to the FAR end)

Fault Type : String representing the type of fault applied. May
be either 3PB, SLG, LL, DLG, or 1PhaseOpen. If
specifying anything other than 3PB (for 3-phase
balanced faults), then you must have entered the
entire positive and zero sequence information input
data for the entire system. Simulator can then
calculate the equivalent impedance seen by the
positive sequence network caused by this fault. The
stability simulation still only model the positive
sequence network effects though.

Fault Across : Specify whether there fault is across an impedance
or admittance. Starts with the string SOLID, IMP, or
ADM. For IMP and ADM, this is then followed by two
numbers representing either R/X or G/B in per unit.

CLEARFAULT not applicable Removes an applied fault
OPEN BOTH OPEN Opens the branch at both ends
OPEN NEAR not applicable Opens the presumed breaker at the branch NEAR end
OPEN FAR not applicable Opens the presumed breaker at the branch FAR end
CLOSE BOTH CLOSE Closes the branch at both ends
CLOSE NEAR not applicable Closes the presumed breaker at the branch NEAR end
CLOSE FAR not applicable Closes the presumed breaker at the branch FAR end
BYPASS BYPASS Bypasses a series reactive element
NOTBYPASS NOTBYPASS Inserts a series reactive element
SET R value1 X value2 SETTO 'value1' Xpu

SETTO 'value1' X%
Sets the line impedance for the duration of the contingency.
Presently only available for branches marked as a Series Cap

Not applicable SETTO 'value' LimitMVA Sets the contingency rating of the line to the MVA value for the

50

duration of the contingency.
Note that the 'value' string may be expressed in three ways. This
functions as described at the beginning of this section.

Table 2: Three-Winding Transformer Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
FAULT PRIMARY 3PB SOLID
FAULT SECONDARY 3PB IMP 0.02 0.06
FAULT TERTIARY 3PB ADM 0.02 0.06

not applicable Applies a fault at the respective terminal of the three-winding transformer.
Starts with the word FAULT followed by the following parameters followed by
the following parameters
Fault Type : String representing the type of fault applied. May be 3PB, SLG,

LL, DLG, or 1PhaseOpen. If specifying anything other than 3PB
(for 3-phase balanced faults), then you must have entered the
entire positive and zero sequence information input data for
the entire system. Simulator can then calculate the equivalent
impedance seen by the positive sequence network caused by
this fault. The stability simulation still only model the positive
sequence network effects though.

Fault Across : Specify whether the fault is across an impedance or
admittance. Starts with the string SOLID, IMP, or ADM. (IMP =
Impedance and ADM = Admittance). For IMP and ADM, this is
then followed by two numbers representing either R/X or G/B
in per unit.

CLEARFAULT not applicable Removes an applied fault
OPEN OPEN Opens the three-winding transformer at all terminals
OPEN PRIMARY not applicable Opens the presumed breaker at the branch primary bus
OPEN SECONDARY not applicable Opens the presumed breaker at the branch secondary end
OPEN TERTIARY not applicable Opens the presumed breaker at the branch tertiary end
CLOSE CLOSE Closes the three-winding transformer at all terminals
CLOSE PRIMARY not applicable Closes the presumed breaker at the branch primary bus
CLOSE SECONDARY not applicable Closes the presumed breaker at the branch secondary end
CLOSE TERTIARY not applicable Closes the presumed breaker at the branch tertiary end

51

Table 3: Load Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
OPEN OPEN Opens the Load
CLOSE CLOSE Closes in the load. Note: In a transient stability simulation this is only

allowed for some types of load models. Certain dynamic motor models
are designed for modeling load starting, while others do not permit this.

CHANGEBY 100 MW
CHANGEBY -30 %

CHANGEBY 'value' MWPF
CHANGEBY 'value' %
CHANGEBY 'value' MW
CHANGEBY 'value' MVAR

The following sets the MVAR equal to
the present MW
CHANGEBY 'MW' MVAR

The following sets the MW equal to
the Model Expression My Expression
evaluated in the reference case
CHANGEBY 'My Expression' MW REF

Changes load level by a defined amount.
For Transient Stability Analysis, the value must be specified in either

MW : Value specified is then used to calculate a percentage change
in the load based on what the load was in the initial condition
and this percentage multiplier is applied to the load.

% : Value specified is applied as a percentage multiplier to the
load

For Power Flow Contingency Analysis,
MWPF : Change the load assuming it varies with constant power

factor. Value is interpreted as the change in MW with the
Mvars moved to keep constant power factor.

% : Will change both the MW and MVar of the load by a
percentage specified.

MW : Will change only the load MW of the load and the value will
be interpreted as MWs

MVAR : Will change only the MVar of the load and the value will be
interpreted as Mvars

Note that the 'value' string may be expressed in three ways. This
functions as described at the beginning of this section.

1.
Not applicable SETTO 'value' MWPF

SETTO 'value' %
SETTO 'value' MW
SETTO 'value' MVAR

These work the same as the CHANGEBY actions above, except instead of
expressing that a value change by a particular amount, the devices are set
to a particular amount instead.

Not applicable MOVETO 'busid' 'value' MWPF
MOVETO 'busid' 'value' %
MOVETO 'busid' 'value' MW
MOVETO 'busid' 'value' MVAR

These work the same as the CHANGEBY actions above, except that the
amount of change for the net MW and Mvar change at the particular
devices are then added to the bus described by 'busid'. The 'busid'
string follows the convention for buses described in Section 2.3.

52

Table 4: Generator Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
OPEN OPEN Opens the generator
CLOSE CLOSE Closes in the generator. Note: In a transient stability

simulation this is only allowed for some types of generator
models. Certain dynamic motor models that are modeled as
a generator (MOTOR1) are designed for modeling load
starting, while others do not permit this.

Not applicable CHANGEBY 'value' %
CHANGEBY 'value' MW
CHANGEBY 'value' MVAR
CHANGEBY 'value' Vpu

The following sets the MVAR equal to
the present MW
CHANGEBY 'MW' MVAR

The following sets the MW equal to
the Model Expression My Expression
evaluated in the reference case
CHANGEBY 'My Expression' MW REF

Changes generation level by a defined amount.
For Transient Stability Analysis, this is not available.
For Power Flow Contingency Analysis,

% : Will change the MW only of the generator by a
percentage specified.

MW : Will change only the MW of the generator and
the value will be interpreted as MWs

MVAR : will change only the MVar of the generator and
the value will be interpreted as Mvars

Vpu : will change the generator setpoint voltage and
the value will be interpreted as per unit voltage

Note that the 'value' string may be expressed in three ways.
This functions the as described at the beginning of this
section.

Not applicable SETTO 'value' %
SETTO 'value' MW
SETTO 'value' MVAR
SETTO 'value' Vpu

These work the same as the CHANGEBY actions above, except
instead of expressing that a value change by a particular
amount, the devices are set to a particular amount instead.

Not applicable MOVETO 'busid' 'value' %
MOVETO 'busid' 'value' MW

These work the same as the CHANGEBY actions above, except
that they only function on the MW values. The amount of
change for the net MW change at the particular devices are
then added to the bus described by 'busid'. The 'busid'
string follows the convention for buses described in Section
2.3.

53

SET Exciter_Setpoint 1.05 pu
SET Governor_Setpoint 1.05 %
SET Power 50 MW
SET Power 50 %

Not applicable Sets the Exciter_Setpoint (Vref), Governor_Setpoint
(Pref), or POWER output of the particular generator to a
particular value. For Exciter_Setpoint and
Governor_Setpoint, values may be expressed either as per
unit (pu) or as a percentage of the initial value (%). For
POWER
Values may be expressed either in MW or percentage of initial
value (%). Also note that setting the MW output of a
generator is only possible if the generator does not have a
transient stability model associated with it, otherwise the
action is ignored. This is because you cannot set the value of
a dynamic variable directly. Basically to change the MW
output of the generator you must change the governor
setpoint.

RAMP Exciter_Setpoint 1.05 pu 5.0
RAMP Governor_Setpoint 1.05 % 5.0
RAMP Power 50 MW 5.0
RAMP Power 50 % 5.0

Not applicable Works the same as the SET actions, except that it starts with
the word RAMP and has one additional numerical parameter
that specifies a number of seconds. The value in question
for the action is that linearly ramped from its present value
to the new value over that number of seconds.

54

Table 5: Bus Shunt and SVD Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
OPEN OPEN Opens the shunt
CLOSE CLOSE Closes in the shunt
Not applicable CHANGEBY 'value' %

CHANGEBY 'value' MW
CHANGEBY 'value' MVAR
CHANGEBY 'value' Vpu

The following sets the MVAR equal to
the present MW
CHANGEBY 'MW' MVAR

The following sets the MW equal to
the Model Expression My Expression
evaluated in the reference case
CHANGEBY 'My Expression' MW REF

Changes shunt level by a defined amount.
For Transient Stability Analysis, this is not available.
For Power Flow Contingency Analysis,

% : Will change the MVAR of the shunt by a percentage
MW : Will change the MW of the shunt and the value will be

interpreted as MWs
MVAR : Will change the Mvars of the shunt and the value will be

interpreted as Mvars
Vpu : Will change the shunt setpoint voltage and the value will be

interpreted as per unit voltage
Note that the 'value' string may be expressed in three ways. This functions
as described at the beginning of this section.

Not applicable SETTO 'value' %
SETTO 'value' MW
SETTO 'value' MVAR
SETTO 'value' Vpu

These work the same as the CHANGEBY actions above, except instead of
expressing that a value change by a particular amount, the devices are set
to a particular amount instead.

Not applicable MOVETO 'busid' 'value' %
MOVETO 'busid' 'value' MW
MOVETO 'busid' 'value' MVAR

Note: Vpu actions aren’t available

These work the same as the CHANGEBY actions above, except that they only
function on the MW values. The amount of change for the net MW
change at the particular devices are then added to the bus described by
'busid'. The 'busid' string follows the convention for buses described in
Section 2.3.

Table 6: Line Shunt Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
Not applicable OPEN Opens the line shunt
Not applicable CLOSE Closes in the line shunt

55

Table 7: Bus Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
FAULT 3PB SOLID
FAULT SLG SOLID
FAULT 3PB IMP 0.02 0.06
FAULT 3PB ADM 0.02 0.06

not applicable Applies a fault at the bus. Starts with the word FAULT followed by the following
parameters followed by the following parameters
Fault Type : String representing the type of fault applied. May be either 3PB, SLG, LL,

DLG, or 1PhaseOpen. If specifying anything other than 3PB (for 3-phase
balanced faults), then you must have entered the entire positive and zero
sequence information input data for the entire system. Simulator can then
calculate the equivalent impedance seen by the positive sequence network
caused by this fault. The stability simulation still only model the positive
sequence network effects though.

Fault Across : Specify whether there fault is across an impedance or admittance. Starts
with the string SOLID, IMP, or ADM. For IMP and ADM, this is then followed
by two numbers representing either R/X or G/B in per unit.

CLEARFAULT not applicable Removes an applied fault
OPEN OPEN Opens the bus

Table 8: Interface Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
Not applicable OPEN Opens all AC lines inside the interface
Not applicable CLOSE Closes all AC lines inside the interface

56

Table 9: Injection Group Actions
Transient Stability
Syntax

Power Flow Syntax Description and Required Elements

OPEN 200 MW GEN
OPEN 500 MW LOAD
OPEN 100 MVAR LOAD
OPEN 400 MVAR SHUNT

Not Applicable Opens generators, loads or shunts up until the total MW or Mvar
removed would exceeds the value specified. The MW or Mvar values
are based on the initial conditions. The order precedence of which
devices are opened is determined by the participation factor of the
participation point. Higher participation factors are processed first.

Not applicable OPEN
OPEN 'value'

The following will evaluate the
participation factors in the reference
case:
OPEN 'value' PPREF

The following will evaluate the
participation factors in the reference case
and the 'value' in the reference case:
OPEN 'value' REF PPREF

Opens all devices in the injection group if no value is specified. If a
value is specified, only that number of devices is opened in the injection
group in the order of highest to lowest participation factor.
Note that the 'value' string may be expressed in three ways. This
functions as described at the beginning of this section.

See comment below about evaluating participation factors in the
reference case.

Not applicable CLOSE Closes all devices in the injection group
Not applicable CHANGEBY 'value' %

CHANGEBY 'value' MW
CHANGEBY 'value' MWMERITORDER
CHANGEBY 'value' MWMERITORDEROPEN

The following sets the MW equal to the
present MVAR:
CHANGEBY 'MVAR' MW

The following sets the MW equal to the
Model Expression My Expression
evaluated in the reference case:
CHANGEBY 'My Expression' MW REF

The following sets the MW equal to the

Changes MW injection by a defined amount.
For Transient Stability Analysis, this is not available.
For Power Flow Contingency Analysis the following options are
available:

For the following two options, the change in the injections will be done
proportional to the participation factors of the participation points.

% : Will change the MW injection of the group by
a percentage of the existing injection.

MW : Will change the MW injection of the group
and the value will be interpreted as MWs

See comments in Section 5.13.5 for the following choices.
%MERITORDER : Will change the MW injection of the group by

57

Model Expression My Expression
evaluated in the reference case and the
participation factors are evaluated in the
reference case:
CHANGEBY 'My Expression' MW REF
PPREF

a percentage of the existing injection.
Change will be achieved by processing
generators and loads in merit order.

MWMERITORDER : Will change the MW injection of the group
and the value will be interpreted as MW.
Change will be achieved by processing
generators and loads in merit order.

%MERITORDEROPEN : Will change the MW injection of the group by
a percentage of the existing injection. Change
will be achieved by opening generators or
loads in merit order.

MWMERITORDEROPEN : Will change the MW injection of the group
and the value will be interpreted as MWs.
Change will be achieved by opening
generators or loads in merit order.

%MERITORDEROPENEXCEED

 : Will change the MW injection of the group by
a percentage of the existing injection. Change
will be achieved by opening generators or
loads in merit order. The change in MW is
allowed to exceed the desired amount.

MWMERITORDEROPENEXCEED

 : Will change the MW injection of the group
and the value will be interpreted as MWs.
Change will be achieved by opening
generators or loads in merit order. The
change in MW is allowed to exceed the
desired amount.

MWEFFECTOPEN : Value that is specified with the action will be
the desired MW Effect that the action should
have. The participation factors defined with
the Injection Group will be interpreted as
effectiveness factors akin to transfer
distribution factors. These factors are
supplied as input by the user when defining

58

the injection group. The effectiveness factors
are multiplied by the present output of
generators (or loads) in the injection group to
determine how much effect they will have if
dropped. The action will find the smallest
number of generator (or loads) to drop which
results in a total MW Effect that is within 5%
of the desired MW Effect, but does not
exceed the desired MW Effect.

MWEFFECTOPENEXCEED : Same as MWEFFECTOPEN, but it will ensure
that the total MW Effect is within 5% of the
desired MW Effect and also meets or exceeds
the desired MW Effect.

Note that the 'value' string may be expressed in three ways. This
functions as described at the beginning of this section.

See comment below about evaluating participation factors in the
reference case. Also see comment regarding PARTPOINT objects which
refer to another injection group.

 SETTO 'value' %
SETTO 'value' MW
SETTO 'value' MWMERITORDER
SETTO 'value' %MWMERITORDEROPEN

These work the same as the CHANGEBY actions above, except instead of
expressing that a value change by a particular amount, the devices are
set to a particular amount instead.
Note: MWEFFECT is not valid for the SETTO actions.

When an action uses participation factors to determine a change, the AutoCalcMethod for the participation factor may allow the value of the
participation factor to be dynamically determined. If using an appropriate AutoCalcMethod and AutoCalc is set to YES, an additional option is
available to allow participation factors to be evaluated in the reference case. This is indicated by appending PPREF after the value. See Section
5.8 for more information on the AutoCalcMethod.

Injection Group can contain PartPoints which reference another Injection Group. The treatment of Injection Groups defined within Injection
Groups will be interpreted to drop the entire contained Injection Group when using the MWMERITORDEROPEN type actions.

59

Table 10: DC Converter Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
Not Applicable OPEN Opens the multi-terminal DC Converter
Not Applicable CLOSE 'value' MW

CLOSE 'value' Amps

Closes in the multi-terminal DC Converter. Must also specify the MW or Amps
setting of the converter as well.
Note that the 'value' string may be expressed in three ways. This functions as
described at the beginning of this section.

Not Applicable CHANGEBY 'value' %
CHANGEBY 'value' MW
CHANGEBY 'value' Amps

Changes the multi-terminal DC Converter set-point by an incremental amount
of MW or Amp. May also specify the change as a percentage of the present set-
point. Note that the 'value' string may be expressed in three ways. This
functions as described at the beginning of this section.

Not Applicable SETTO 'value' %
SETTO 'value' MW
SETTO 'value' Amps

These work the same as the CHANGEBY actions above, except instead of
expressing that a value change by a particular amount, the setpoint is set to a
particular amount instead.

Not Applicable Not Applicable Ramping values not added presently.

Table 11: DC Line Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
OPEN OPEN Opens the two-terminal DC Line
Not Applicable CLOSE 'value' MW

CLOSE 'value' Amps

Closes in the two-terminal DC Line. Must also specify the MW or Amps setting
of the converter as well.
Note that the 'value' string may be expressed in three ways. This functions as
described at the beginning of this section.

Not Applicable CHANGEBY 'value' %
CHANGEBY 'value' MW
CHANGEBY 'value' Amps

Changes the two-terminal DC Line set-point by an incremental amount of MW
or Amp. May also specify the change as a percentage of the present set-point.
Note that the 'value' string may be expressed in three ways. This functions as
described at the beginning of this section.

Not Applicable SETTO 'value' %
SETTO 'value' MW
SETTO 'value' Amps

SETTO 'value' OHMS

These work the same as the CHANGEBY actions above, except instead of
expressing that a value change by a particular amount, the setpoint is set to a
particular amount instead.
SETTO actions also allow the resistance of the DC Line to be set by using the
OHMS setting. There is no CHANGEBY action that will adjust the resistance.

Not Applicable Not Applicable Ramping values not added presently.

60

Table 12: Substation Actions
Transient Stability Syntax Power Flow Syntax Description and Required Elements
Not Applicable OPEN Opens the substation

61

5.13.5 Special InjectionGroup Contingency Action for Generators by Merit Order

Normally all generators and loads in the injection group are adjusted according to their relative
participation factors. All with non-zero participation factors will be adjusted to meet the desired
injection. When using the option MWMERITORDER or %MERITORDER, generators and loads will be adjusted
in order of highest relative participation factor to lowest with each element in the list being adjusted
until it hits either its maximum or minimum MW limit before moving on to the next element. This
process continues until the desired injection is met. Generator status will not be changed in the process,
which means all online generators will continue to provide Mvar support. Loads that have both their
minimum and maximum MW limits set to zero will not be allowed to increase. They can only decrease
to 0 MW.

There are also options MWMERITORDEROPEN and %MERITORDEROPEN. When using these, if the MW output
requested is lower than the existing MW injection of the injection group, then the merit order dispatch
will be modified by only opening generators. (Note: the expectation is that the ChangeBy option would
most frequently be used with this option with a negative value.) If requested injection is lower, the
generator in the injection group with the highest participation factor will have its status changed to
Open, followed by the second generator and so on. This will continue until the amount of MW opened is
as close to the desired amount as possible but has not exceeded the desired amount of change. If
opening a generator will cause the amount of MW opened to exceed the desired amount, that
generator will be skipped and the next one in merit order will be examined. If the MW injection
requested is higher than the present MW injection, loads will be opened in the same manner. If the
MW injection requested is higher than the present MW injection and there are no loads in the injection
group, generators will be increased toward their maximum MW output in the same manner as done for
MWMERITORDER or %MERITORDER. If the MW injection requested is lower than the present MW injection
and there are no generators in the injection group, loads will be increased toward their maximum MW
output in the same manner as done for MWMERITORDER or %MERITORDER.

The options MWMERITORDEROPENEXCEED and %MERITORDEROPENEXCEED are very similar to the
MWMERITORDEROPEN and %MERITORDEROPEN options except that the amount of MW opened is
allowed to exceed the desired amount of change. Generators or loads will be opened in merit order
until the desired amount is met or exceeded.

5.14 RemedialAction and RemedialActionElement

RemedialActions are intended to be named containers of actions representing RAS. The elements of
each remedial action are inherently applied to every contingency. The fields recognized by the
RemedialAction object type are the same as for the Contingency object type. The exception is that no
Category is assigned to the RemedialActionScheme.

The fields recognized by the RemedialActionElement object type are the same as for the
ContingencyElement object type except for one additional field called InclusionFilter which is described
as follows.

62

Field Description and Rules for Field
InclusionFilter Name of a filter or device filter (See Section 3 or 3.3) that gets applied to each

contingency. If the contingency meets the Inclusion filter defined, that
contingency will include this element. Otherwise, the remedial action element
will be ignored. A description of the format of this string is in Section 3.4.

A sample file section is shown as follows:

RemedialAction(Name, Skip, Memo)
{
"Cowboy RAS" "NO" ""
"Viking RAS" "NO" ""
"Dolphin-Raider RAS" "NO" ""
"Viking-Dolphin 1 Overload" "NO" ""
"Viking-Dolphin 2 Overload" "NO" ""
}
RemedialActionElement (RemedialAction, Object, Action, Criteria,
 CriteriaStatus, TimeDelay, InclusionFilter, Comment)
{
"Cowboy RAS" "GEN 31 1" "OPEN" "OPEN Cowboy G1" "TOPOLOGYCHECK" 0 "" ""
"Viking RAS" "INJECTIONGROUP 'Viking G1 and G2'" "OPEN" "OPEN Viking G1 and G2"
 "TOPOLOGYCHECK" 0 "" ""
"Dolphin-Raider RAS" "GEN 28 1" "OPEN" "Dolphin-Raider 1 138 kV Line"
 "TOPOLOGYCHECK" 0 "" ""
"Viking-Dolphin 1 Overload" "BRANCH 28 29 1" "OPEN" "Viking-Dolphin 1 345/138 Over 135%"
 "POSTCHECK" 0 "" ""
"Viking-Dolphin 2 Overload" "BRANCH 28 29 2" "OPEN" "Viking-Dolphin 2 345/138 Over 135%"
 "POSTCHECK" 0 "" ""
}

6 Steady State Contingency Analysis with RAS and Stability Models

A contingency processor will go through each contingency record marked as SKIP = NO. It will gather all
the specified actions as well as every action contained in any Remedial Action Scheme record (again
marked as SKIP = NO). This will then form a list of actions that will be processed.

The use of transient stability models inside of the power flow contingency analysis should also be
handled. Transient stability actions are evaluated at specific points in the process and will be applied
based on their time parameters. At the point in the process that dynamic models are processed by the
steady state contingency analysis, the stability models defined in the power system model will be
queried and any stability models types that are set to Trip/Act (see Section 5.7) and whose conditions
for action are met will be added to a list. For each model in this list a time delay is calculated based on
the transient stability model parameters and the power flow system state at that point in the process
(this might be a definite time delay parameter or a time-inverse characteristic). This list is then sorted
and only those actions, including both power flow and transient, that have the smallest time delay will
be taken (all times are rounded to the nearest integer microsecond). The contingency processer will
then solve the power flow and go back through the entire process of other contingency actions again.

The overall process goes as follows. When we refer to “actions” in this flow process we mean both
contingency actions and remedial action scheme actions collectively. When we refer to “Transient
actions” we mean actions caused by a transient stability dynamic model.

63

1. Apply ALWAYS actions and true CHECK actions
2. Update system topology (branch and bus Status and Derived Status)
3. Apply true TOPOLOGYCHECK actions

a. TRANSIENT actions will also be evaluated
b. TRANSIENT or TOPOLOGYCHECK actions with the smallest TimeDelay will be applied

4. Solve power flow
5. Apply true POSTCHECK actions

and true TOPOLOGYCHECK actions
a. TRANSIENT actions will also be evaluated
b. TRANSIENT, POSTCHECK, or TOPOLOGYCHECK actions with the smallest TimeDelay will be

applied
6. If any POSTCHECK, TOPOLOGYCHECK, or TRANSIENT actions are done then go back to step 2 and

repeat 2-6

After this process has been completed, the contingency analysis processor should provide mechanisms
to report which actions were applied during the contingency solution. In addition it should provide
mechanisms to report violations that occurred. The format does not prescribe how the contingency
result reporting should be performed as that is purely an output of a software tool. The limit monitoring
settings however are really an integral part of a contingency processor, so the Limit Monitoring Settings
and data structures for specifying them are described in Section 8.

7 Transient Stability Contingency Analysis Processing with RAS

It was discussed in the Project Summary Section that the ability to immediately, completely and
generically specify RAS for use in the transient stability environment will not be achieved in this project.
Taken that as a given, the accomplishments of this project do open a promising avenue for doing this
going forward in an incremental way. Specific RAS models could be created for the transient stability
environment in much the same process that new dynamic models are done now (for example the new
wind turbine models developed through the WECC MVWG or the new CMPLDW load model developed
through that same working group.) PowerWorld Simulator has already added a feature to model the
Fast AC Reactive Insertion (FACRI) RAS in WECC as a switched shunt model (FACRI_SS) and a series cap
model (FACRI_SC). It should be possible to move these dynamic models into the power flow based
contingency analysis tool in a manner similar to that already done for relay models as discussed in
Section 5.7.1. It is PowerWorld’s recommendation that this avenue be explored, but we do realize this
is an area of discussion.

64

8 Limit Monitoring Settings

Although these settings are called “Limit Monitoring Settings” they are not designed to specify what to
monitor as much as to specify what NOT to monitor. By default it will be assumed that limit monitoring
is done on all buses, branches and interfaces in the power system. Thus a novice user specifying none of
this information will cause the system to monitor everything. With the monitoring of all records as a
starting point, the following data records provide mechanisms to choose when not to monitor a device.
A device will only be monitored if the following 4 conditions are met.

1. Monitor Field: Each bus, branch, and interface has its own Monitor Field. These fields are
described in Sections 8.4, 8.5 and 8.6. These fields must be set to YES in order for the device to
be monitored.

2. LimitSet Disabled Field: Each bus, branch, and interface in the system is assigned to a LimitSet.
The LimitSet’s Disabled field must be set to NO. These are described in Section 8.1.

3. Area Monitoring: The device’s area (or one of the areas if it is a tie-line) must have its
MonitorLimits field set to YES and the device must meet the MonitorMinkV to MonitorMaxkV
range of the area. These are described in Section 8.2.

4. Zone Monitoring: The device’s zone (or one of the zones if it is a tie-line) must have its
MonitorLimits field set to YES and the device must meet the MonitorMinkV to MonitorMaxkV
range of the zone. These are described in Section 8.3.

8.1 LimitSet

LimitSet records store information about how buses, branches, and interfaces are monitored. Each Bus,
Branch, and Interface is assigned to one LimitSet and inherits properties for how it is monitored from
the LimitSet. The fields recognized by the LimitSet object type are shown in the following table.

Field Description and Rules for Field
Name Name of the LimitSet. This is the unique identifier for the LimitSet so there

can only be one LimitSet with this Name.
Disabled Set to YES to disable all monitoring of devices belonging to this LimitSet. Set

to NO to enable monitoring

Following fields are related to monitoring branches and interfaces
AmpMVA Set to Amp/MVA to monitor based on Amp limits on transmission lines and

MVA limit on transformers.
Set to MVA to monitor based on MVA limits on all branches.

BranchPercent Set to the percentage at which violations will be reported for branches
InterfacePercent Set to the percentage at which violations will be reported for interfaces
BranchRateSet The rating set used to monitor branches during in the reference case.

Set to either A, B, C, D, E, F, G, or H. See Section 8.1.1.
InterfaceRateSet The rating set used to monitor interfaces during in the reference case.

Set to either A, B, C, D, E, F, G, or H. See Section 8.1.1.
BranchRateSetCTG The rating set used to monitor branches during a contingency solution.

Set to either A, B, C, D, E, F, G, or H. See Section 8.1.1.

65

InterfaceRateSetCTG The rating set used to monitor interfaces during a contingency solution.
Set to either A, B, C, D, E, F, G, or H. See Section 8.1.1.

Following fields are related to monitoring high and low bus voltages. See Section 8.1.2 for details.
HighVolt Set to the per unit voltage above which is considered a high violation in the

the reference case.
LowVolt Set to the per unit voltage below which is considered a low violation in the

the reference case.
HighVoltCTG Set to the per unit voltage above which is considered a high violation in the

the contingency solution.
LowVoltCTG Set to the per unit voltage below which is considered a low violation in the

the contingency solution.
HighVoltRateSet The rating set used for high bus voltages during in the reference case.

Set to either A, B, C, D. These options are only used if a bus is configured
to store its own voltage limits, which is not what is most common.

LowVoltRateSet The rating set used for low bus voltages during in the reference case.
Set to either A, B, C, D. These options are only used if a bus is configured
to store its own voltage limits, which is not what is most common.

HighVoltRateSetCTG The rating set used for high bus voltages during a contingency solution.
Set to either A, B, C, D. These options are only used if a bus is configured
to store its own voltage limits, which is not what is most common.

LowVoltRateSetCTG The rating set used for low bus voltages during a contingency solution.
Set to either A, B, C, D. These options are only used if a bus is configured
to store its own voltage limits, which is not what is most common.

Following fields are related to the monitoring of violations based on how the system changes after a
contingency solution.
UseSetCTGMon Set to YES to specify that the following options override the

CTG_Options_Value options with the same names. Set to NO to ignore the
following options. Normally these options are specified globally for all
devices during the contingency analysis, but by setting this option to YES
these values will override them for devices in this LimitSet.

VoltChangePercent See Section 5.7
MonDiscBus See Section 5.7
NeverReport See Section 5.7
NeverBranchInc See Section 5.7
NeverLowVoltDec See Section 5.7
NeverHighVoltInc See Section 5.7
NeverInterfaceInc See Section 5.7
AlwaysReport See Section 5.7
AlwaysBranchInc See Section 5.7
AlwaysLowVoltDec See Section 5.7
AlwaysHighVoltInc See Section 5.7
AlwaysInterfaceInc See Section 5.7

66

A sample file section is shown as follows:

LimitSet (Name,LowVolt,HighVolt,BranchPercent,InterfacePercent,NomogramPercent,
 BranchRateSet,BranchRateSetCTG,InterfaceRateSet,InterfaceRateSetCTG,Disabled,
 AmpMVA,NeverReport,AlwaysReport,VoltChangePercent,NeverBranchInc,
 AlwaysBranchInc,NeverLowVoltDec,AlwaysLowVoltDec,NeverHighVoltInc,
 AlwaysHighVoltInc,NeverInterfaceInc,AlwaysInterfaceInc,MonitorEnd,
 LowVoltRateSet,HighVoltRateSet,LowVoltRateSetCTG,
 HighVoltRateSetCTG,LowVoltCTG,HighVoltCTG,MonDiscBus,UseSetCTGMon)
{
"Default" 0.95 1.05 100.0 100.0 100.0 "A" "B" "A" "B" "NO" "Amp/MVA"
"NO" "NO" "NO" 0.0 999.0 0.0 2.0 0.0 2.0 0.0 999.0 "Higher" "A" "A" "B" "B"
0.900 1.100 "NO" "NO"

"Limit Set 1" 0.96 1.04 110.0 100.0 100.0 "C" "D" "C" "D" "NO" "Amp/MVA"
"NO" "NO" "NO" 0.0 999.0 0.0 2.0 0.0 2.0 0.0 999.0 "Higher" "C" "C" "D" "D"
0.910 1.110 "NO" "NO"

"Limit Set 2" 1.00 1.10 120.0 100.0 100.0 "E" "F" "A" "B" "NO" "Amp/MVA"
"NO" "NO" "NO" 0.0 999.0 0.0 2.0 0.0 2.0 0.0 999.0 "Higher" "A" "A" "B" "B"
0.950 1.150 "NO" "NO"
}

8.1.1 Branch and Interface relationship to LimitSet

Each branch in the underlying power system data records has 8 limits assigned to it. These are referred
to as Limit A, B, C, D, E, F, G, and H. The fields associated with the limits are LimitMVAA, LimitMVAB,
LimitMVAC, LimitMVAD, LimitMVAE, LimitMVAF, LimitMVAG, and LimitMVAH.

Similarly, each interface has 8 limits (A-H) assigned to it. The fields associated with the limits are
LimitMWA, LimitMWB, LimitMWC, LimitMWD, LimitMWE, LimitMWF, LimitMWG, and LimitMWH.

The LimitSet has various fields that specify which rating set to use when monitoring in the contingency
reference case or during the post-contingency monitoring. These refer to these A – H limits.

8.1.2 Bus relationship to LimitSet

Traditionally, power flow data records have not stored voltage ratings with each individual bus record.
As a result, the typical way that high and low bus limits are assigned to a bus is by assigning the bus to a
LimitSet and then configuring the LimitSet fields HighVolt/LowVolt and HighVoltCTG/LowVoltCTG
appropriately to assign the High/Low voltage limits during the reference case and post-contingency
monitoring respectively.

It is also possible to assign 4 sets of high and low per unit voltage limits for each bus (call them High A, B,
C, and D and Low A, B, C, and D). With each bus record, there is then a flag called “Use bus-specific
limits”. If this flag is set to YES, the bus limits will be determined by using the LimitSet fields that refer to
a “RateSet” in much the same way as is done for Branch and Interface limits as described in Section
8.1.1. The fields associated with these bus-specific limits are as follows: UseSpecificLimits, LimitHighA,
LimitHighB, LimitHighC, LimitHighD, LimitLowA, LimitLowB, LimitLowC, and LimitLowD.

67

8.2 Area (settings for limit monitoring)

Special area limit monitoring options are entered to specify which devices are monitored for violations
during the contingency analysis process. The fields are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the area using the object string in format specified in Section 2.3
MonitorLimits Set to YES to specify that objects belonging to this area be monitored for

violations. Set to NO to not monitor objects in the area. Devices such as a
branch that ties two areas together may be monitored if either one of its
terminal areas are monitored.

MonitorMinkV Specify the minimum nominal kV level at which monitoring is done.
MonitorMaxkV Specify the maximum nominal kV level at which monitoring is done. For

branches that are tie-lines, the branch may be monitored if either terminal bus
meets the voltage range.

A sample file section is shown as follows:

Area (ObjectID, MonitorLimits, MonitorMinkV, MonitorMaxkV)
{
 "Area 50" "YES" 150.0 600.0
 "Area 'BCHydro'" "YES" 60.0 600.0
 "Area 'Arizona'" "NO" 0.0 999.0
}

8.3 Zone (settings for limit monitoring)

Special zone limit monitoring options are entered to specify which devices are monitored for violations
during the contingency analysis process. The fields are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the zone using the object string in format specified in Section 2.3
MonitorLimits Set to YES to specify that objects belonging to this zone be monitored for

violations. Set to NO to not monitor objects in the zone. Devices such as a
branch that ties two zone together may be monitored if either one of its
terminal zone are monitored.

MonitorMinkV Specify the minimum nominal kV level at which monitoring is done.
MonitorMaxkV Specify the maximum nominal kV level at which monitoring is done. For

branches that are tie-lines, the branch may be monitored if either terminal bus
meets the voltage range.

A sample file section is shown as follows:

Zone (ObjectID, MonitorLimits, MonitorMinkV, MonitorMaxkV)
{
 "Zone 50" "YES" 150.0 600.0
 "Zone 'WestSide'" "YES" 60.0 600.0
 "Zone 566" "NO" 0.0 999.0
}

68

8.4 Bus (settings for limit monitoring)

Special bus limit monitoring options are entered to specify whether to monitor this bus and which
LimitSet it belong to. The fields are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the bus using the object string in format specified in Section 2.3
Monitor Set to YES to specify that this bus should be monitored. Set to NO to not

monitor this bus.
LimitSet Name of the Limit Set to which the bus belongs

A sample file section is shown as follows:

Bus (ObjectID, Monitor, LimitSet)
{
"Bus 10" "YES" "Limit Set 1"
"Bus 'MyLabel'" "YES" "Limit Set 2"
"Bus 'Springfield_345.0'" "YES" "Limit Group 2"
}

8.5 Branch (settings for limit monitoring)

Special branch limit monitoring options are entered to specify whether to monitor this branch and
which LimitSet it belong to. The fields are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the branch using the object string in format specified in Section 2.3
Monitor Set to YES to specify that this branch should be monitored. Set to NO to not

monitor this branch.
LimitSet Name of the Limit Set to which the branch belongs

A sample file section is shown as follows:

Branch (ObjectID, Monitor, LimitSet)
{
"Branch 10 55 '1'" "YES" "Limit Set 1"
"Branch 'MyLabel'" "YES" "Limit Set 2"
"Branch 'MyName_345.0' ' MyName _138.0' '2'" "YES" "Limit Group 2"
}

69

8.6 Interface (settings for limit monitoring)

Special interface limit monitoring options are entered to specify whether to monitor this interface and
which LimitSet it belong to. The fields are shown in the following table:

Field Description and Rules for Field
ObjectID Identifies the interface using the object string in format specified in Section 2.3
Monitor Set to YES to specify that this interface s should be monitored. Set to NO to

monitor this interface.
LimitSet Name of the Limit Set to which the interface belongs

A sample file section is shown as follows:

Interface (ObjectID, Monitor, LimitSet)
{
"Interface 'PDCI'" "YES" "Limit Set 1"
"Interface 'COI'" "YES" "Limit Set 2"
"Interface 'West of Springfield'" "YES" "Limit Group 2"
}

8.7 CustomMonitor

Standard limit monitoring in power flow based contingency analysis looks only at branch MVA limits, bus
voltage limits, and interface MW limits. These limits are specified in the standard power flow case input
data formats already. There may be a need for more specific types of monitoring, which can be
achieved by defining a CustomMonitor data record. Examples of such needs are as follows:

1. The monitoring of other fields (say generator MW outputs)
2. Ability to enable or disable monitoring based on the Category of the contingency
3. Ability to use modified monitoring based on a change from the reference case based on

Category of the contingency

The CustomMonitor object has the following fields:

Field Description and Rules for Field
Name Unique Name for the custom monitor object
Enabled Set to YES to enable this custom monitor.

Set to NO to turn off the use of this monitor.
Category A comma delimited list of strings representing the contingency categories

assigned to this custom monitor. A custom monitor will only be used to look
for violations during a contingency if at least one category is in common
between the Contingency and the CustomMonitor object.

ObjectType Object type to be monitored by this custom monitor. See choices for object
types in Section 2.2.

Object If this field is left blank then all objects of the type specified by ObjectType
will be monitored by this CustomMonitor. Otherwise a specific object may
be specified by entering a string using the format described in Section 2.3.

70

ObjectField Field that is monitored for the objects or object describe by the ObjectType
or Object of this record. The fields are the strings described in Section 2.4.

FilterPre Name of a filter or device filter (See Section 3 or 3.3). If this is specified, an
object must meet this filter in the contingency reference state in order for it
to be monitored in the contingency analysis run. A description of the format
of this string is found in Section 3.4. Violations will be reported only if both
FilterPre and FilterPost are met.

FilterPost Name of a filter or device filter (See Section 3 or 3.3). If this is specified, an
object must meet this filter in the post-contingency state in order for it to
report a violation in the contingency analysis tool. A description of the
format of this string is found in Section 3.4. Violations will be reported only
if both FilterPre and FilterPost are met.

UseMinIncrease Set to YES to specify that a violation should be reported if the increase in the
value being monitored is greater than the value specified as MinIncrease.
Set to NO to disable this feature.

MinIncrease The value that goes with the UseMinIncrease option
UseMinDecrease Set to YES to specify that a violation should be reported if the decrease in

the value being monitored is greater than the value specified as
MinDecrease. Set to NO to disable this feature.

MinDecrease The value that goes with the UseMinDecrease option
ValueMeaning Meaning of the MinDecrease and MinIncrease values.

Percent : means values should be interpreted as a percent change from
the initial value

Actual : means values should be interpreted as the actual change in the
units of the field being monitored

A sample file section is shown as follows:

Filter (Name,ObjectType,Logic,FilterPre,Enabled)
{
"Roughride over Max" "Gen" "AND" "NO " "YES"
}
Condition (ObjectType,Filter,CondNum,ObjectField,ConditionType,Value,OtherValue,Absolute)
{
"Gen" "Roughrider Max" 1 "MW" ">" "<Field>MWMax" "" "NO "
}
CustomMonitor (Name,Enabled,Category,ObjectType,Object,ObjectField,FilterPre,
FilterPost,UseMinIncrease,MinIncrease,UseMinDecrease,MinDecrease,ValueMeaning)
{
"Bus Voltage Drops" "YES" "" "Bus" "" "Vpu" "" "" "YES" 5 "NO " 0 "Percent"
// following appears across 2 lines of text.
"Roughrider high" "YES" "" "Gen" "Gen '54' '1'" "MW" ""
 "Roughrider Max" "NO " 0 "NO " 0 "Actual"
}

71

9 Final Demonstration

9.1 Saving a file in this format

The data format described in this document has been fully integrated in PowerWorld Simulator Version
18 and will serve as a more concise and readable version of PowerWorld’s Auxiliary File Format. This
format builds on that technology but has improved it to make it easier for humans to read and
presumably simpler for others to parse. In order to save this file from within the PowerWorld Simulator
software tool, one need only open the Contingency Analysis dialog and click on the Save button shown
in the following figure.

72

In the Save Dialog that then appears, the Save as Type drop-down should be changed to WECC
Contingency and RAS file (*.aux) as shown in the following figure.

Finally, after choosing a file to which to save, another dialog will appear prompting you to choose which
type of key identifiers to use when saving the file. The choice of key identifiers was described more in
Section 2.3. The dialog will look as shown below.

After clicking Choose, this will then save the file to the hard drive.

73

9.2 Loading a file in this Format into PowerWorld Simulator

The structure described in this document will be read into PowerWorld Simulator as though it is one of
PowerWorld’s own Auxiliary Files. Thus loading the file is very simple:

1. Go the File menu and choose File, Load Auxiliary
2. Use the Open Dialog to navigate to the file
3. Click Open

Within PowerWorld Simulator, you may also open an Auxiliary Files from the local menu of any case
information display (table of data), but the most basic way will be as shown above.

74

9.3 Example file in this format

The following represents a sample of all the information described in the previous portions of this
document. The file is concise yet contains enough self-documentation that it is human readable.

//--
// THE FOLLOWING INJECTION GROUP DEFINITIONS ARE BEING SAVED BY
//---
INJECTIONGROUP (Name)
{
"Viking G1 and G2"
}
PARTPOINT (GroupName,Object,AutoCalcMethod,PartFact,AutoCalc)
{
"Viking G1 and G2" "Gen '28' '1'" "SPECIFIED" 150.00000 "NO "
"Viking G1 and G2" "Gen '28' '2'" "SPECIFIED" 150.00000 "NO "
}

//--
// THE FOLLOWING LIMIT MONITORING SETTINGS ARE BEING SAVED BY THE CONTINGENCY TOOL.
//--
LIMITSET (Name,LowVolt,HighVolt,BranchPercent,InterfacePercent,
 BranchRateSet,BranchRateSetCTG,InterfaceRateSet,InterfaceRateSetCTG,Disabled,
 AmpMVA,NeverReport,AlwaysReport,VoltChangePercent,NeverBranchInc,
 AlwaysBranchInc,NeverLowVoltDec,AlwaysLowVoltDec,NeverHighVoltInc,
 AlwaysHighVoltInc,NeverInterfaceInc,AlwaysInterfaceInc,
 LowVoltRateSet,HighVoltRateSet,LowVoltRateSetCTG,
 HighVoltRateSetCTG,LowVoltCTG,HighVoltCTG,MonDiscBus,UseSetCTGMon)
{
"Default" 0.95 1.05 100.0 100.0 "A" "B" "A" "B" "NO" "Amp/MVA" "NO" "NO" "NO" 0.0 999.0
0.0 2.0 0.0 2.0 0.0 999.0 "A" "A" "B" "B" 0.900 1.100 "NO" "NO"

"Limit Set 1" 0.96 1.04 110.0 100.0 "C" "D" "C" "D" "NO" "Amp/MVA" "NO" "NO" "NO" 0.0 999.0
0.0 2.0 0.0 2.0 0.0 999.0 "C" "C" "D" "D" 0.910 1.110 "NO" "NO"

"Limit Set 2" 1.00 1.10 120.0 100.0 "E" "F" "A" "B" "NO" "Amp/MVA" "NO" "NO" "NO" 0.0 999.0
0.0 2.0 0.0 2.0 0.0 999.0 "A" "A" "B" "B" 0.950 1.150 "NO" "NO"
}

AREA (ObjectID,MonitorLimits,MonitorMaxkV,MonitorMinkV)
{
"Area '1'" "YES" 30.0000 345.0000
}

ZONE (ObjectID,MonitorLimits,MonitorMaxkV,MonitorMinkV)
{
"Zone '1'" "YES" 30.0000 345.0000
}

SCRIPT
{
// set all buses to monitored as part of first limit group
SetData(Bus, [Monitor,LimitSet], ["YES", "Default"], All);
}
BUS (ObjectID,Monitor,LimitSet)
{
"Bus '10'" "YES" "Limit Group 1"
"Bus '14'" "YES" "Limit Group 1"
"Bus '16'" "YES" "Limit Group 2"
"Bus '17'" "YES" "Limit Group 2"
}

SCRIPT
{
// set all branches to monitored as part of first limit group
SetData(Branch, [Monitor,LimitSet], ["YES", "Default"], All);
}

75

BRANCH (ObjectID,Monitor,LimitSet)
{
"Branch '1' '40' '1'" "YES" "Limit Group 1"
"Branch '3' '41' '1'" "YES" "Limit Group 2"
"Branch '5' '44' '1'" "YES" "Limit Group 2"
"Branch '10' '19' '1'" "YES" "Limit Group 1"
"Branch '12' '40' '1'" "YES" "Limit Group 1"
}
SCRIPT
{
// set all interfaces to monitored as part of first limit group
SetData(Interface, [Monitor,LimitSet], ["YES", "Default"], All);
}
FILTER (Name,ObjectType,Logic,FilterPre,Enabled)
{
"Roughride over Max" "Gen" "AND" "NO " "YES"
}
CONDITION (ObjectType,Filter,CondNum,ObjectField,ConditionType,Value,OtherValue,Absolute)
{
"Gen" "Roughrider Max" 1 "MW" ">" "<Field>MWMax" "" "NO "
}
CUSTOMMONITOR (Name,Enabled,Category,ObjectType,Object,ObjectField,FilterPre,FilterPost,
 UseMinIncrease,MinIncrease,UseMinDecrease,MinDecrease,ValueMeaning)
{
"Bus Voltage Drops" "YES" "" "Bus" "" "Vpu" "" "" "YES" 5 "NO " 0 "Percent"
"Roughrider high" "YES" "" "Gen" "Gen '54' '1'" "MW" "" "Roughrider Max" "NO " 0 "NO " 0 "Actual"
}
//--
// THE FOLLOWING SECTION CONTAINS OPTIONS FOR THE CONTINGENCY ANALYSIS.
//--
CTG_OPTIONS_VALUE (VariableName,Value)
{
"AlwaysReport" "YES"
"AlwaysBranchInc" "999"
"AlwaysHighVoltInc" "2"
"AlwaysInterfaceInc" "999"
"AlwaysLowVoltDec" "2"
"NeverReport" "YES"
"NeverBranchInc" "2"
"NeverHighVoltInc" "0"
"NeverInterfaceInc" "0"
"NeverLowVoltDec" "0"
"VoltChangePercent" "NO"
"MonDiscBus" "NO"
"DisableGenDropOverlap" "NO"
"AGCTolerance" "0.05"
"MakeUpPower" "Gen Part Factors"
"TSModelMaxDelay" "3600"
"TSModelsTrip" ""
"TSModelsMonitor" ""
"DynAssignSlack" "Default"
"PUConvergenceTol" "0.001"
"DisableOptMult" "Default"
"MaxItr" "50"
"MinVoltILoad" "Default"
"MinVoltSLoad" "Default"
"EnforceGenMWLimits" "YES"
"LTCTapBalance" "Default"
"ChkPhaseShifters" "NO"
"ChkSVCs" "NO"
"ChkShunts" "NO"
"ChkTaps" "NO"
"DisableGenMVRCheck" "Default"
"ChkVarImmediately" "Default"
"MaxItrVoltLoop" "Default"
"MinLTCSense" "Default"
"ModelPSDiscrete" "Default"
"PreventOscillations" "Default"
"ShuntInner" "NO"
}

76

//--
// THE FOLLOWING SECTION CONTAINS THE POWER FLOW SOLUTION OPTIONS.
//--
SIM_SOLUTION_OPTIONS_VALUE (VariableName,Value)
{
"DynAssignSlack" "YES"
"DisableOptMult" "NO"
"MaxItr" "50"
"MinVoltILoad" "0.5"
"MinVoltSLoad" "0.7"
"AGCTolerance" "0.05"
"EnforceGenMWLimits" "YES"
"LTCTapBalance" "YES"
"ChkPhaseShifters" "YES"
"ChkSVCs" "YES"
"ChkShunts" "YES"
"ChkTaps" "YES"
"ChkVarImmediately" "NO"
"MaxItrVoltLoop" "20"
"MinLTCSense" "0.01"
"ModelPSDiscrete" "NO"
"PreventOscillations" "YES"
"ShuntInner" "YES"
}

// THE FOLLOWING SECTION CONTAINS OPTIONS FOR MAKE UP GENERATION FOR CONTINGENCY
AREA (ObjectID,CTGMakeUpGen)
{
"Area '1'" 0.0000
}

// THE FOLLOWING SECTION CONTAINS OPTIONS FOR ALL GENERATION SET TO LIMIT THE MW
// RESPONSE OF A GENERATOR IN THE POST-CONTINGENCY SOLUTION
SCRIPT
{
// set all generators to have no Maximum response
SetData(Gen, [CTGMaxResp], [-1.0], All);
}
GEN (ObjectID,CTGMaxResp)
{
"Gen '28' '1'" 15.0000
"Gen '31' '1'" 44.0000
"Gen '48' '1'" 5.0000
"Gen '53' '1'" 12.0000
}

// THE FOLLOWING SECTION CONTAINS OPTIONS FOR ALL GENERATION SET TO LIMIT THE
// AGC RESPONSE OF A GENERATOR IN THE POST-CONTINGENCY SOLUTION
SCRIPT
{
// set all generators to not prevent post-contingency ATC response
SetData(Gen, [CTGPreventAGC,CTGPartFact], ["NO","same"], All);
}
GEN (ObjectID,CTGPreventAGC,CTGPartFact)
{
"Gen '14' '1'" "RESPOND" 11.000000
"Gen '28' '2'" "YES" same
"Gen '31' '1'" "RESPOND" 12.000000
"Gen '50' '1'" "NO" 13.000000
}

// THE FOLLOWING SECTION CONTAINS OPTIONS FOR ALL GENERATION SET TO USE LINE DROP/REACT CURRENT
COMP IN POST-CONTINGENCY
SCRIPT
{
// set all generators to not use line drop comp
SetData(Gen, [UseLineDrop], ["NO"], All);
}
GEN (ObjectID,UseLineDrop,Xcomp)
{
"Gen '28' '2'" "PostCTG" 0.055500

77

"Gen '48' '1'" "PostCTG" -0.051200
}

// THE FOLLOWING SECTION CONTAINS OPTIONS FOR ALL LOAD THROW OVER RECORDS IN POST-CTG
SCRIPT
{
// set all buses to have NO load throw over bus
SetData(Bus, [CTGLoadThrow], [""], All);
}
BUS (ObjectID,CTGLoadThrow)
{
"Bus '3'" "Bus '1'"
"Bus '12'" "Bus '10'"
"Bus '14'" "Bus '15'"
}

// THE FOLLOWING MODEL EXPRESSIONS ARE NEEDED BY THE CONTINGENCY RECORDS WHICH FOLLOW
MODELEXPRESSION (Name,Type,Expression,Memo,Object1,x1,Object2,x2,Object3,x3,
 Object4,x4,Object5,x5,Object6,x6,Object7,x7,Object8,x8)
{
"My 1D Lookup" "Lookup" "" "" "Branch '31' '28' '1'" "MVAMax" "" "" "" "" "" "" "" "" "" "" "" ""
"" ""
 <SUBDATA LookupTable>
 x1 value
 100.000000 50.000000
 200.000000 65.000000
 300.000000 72.000000
 400.000000 75.000000
 </SUBDATA>
"My 2D Lookup" "Lookup" "" "" "Branch '32' '29' '1'" "MVAMax" "Branch '56' '29' '1'" "MVAMax" ""
"" "" "" "" "" "" "" "" "" "" ""
 <SUBDATA LookupTable>
 x1x2 100.000000 200.000000 300.000000
 50.000000 1.000000 1.450000 1.550000
 100.000000 1.500000 1.700000 1.850000
 150.000000 1.600000 1.900000 2.000000
 </SUBDATA>
"My Expression" "Expression" "0.8*x1 + 0.5*x2" "" "Gen '48' '1'" "MW" "Gen '31' '1'" "MW" "" ""
"" "" "" "" "" "" "" "" "" ""
}

// THE FOLLOWING MODEL CONDITIONS ARE NEEDED BY THE CONTINGENCY RECORDS WHICH FOLLOW
MODELCONDITION (Name,Object,FilterObjectType,FilterLogic,EvaluateInRef,DisableIfTrueInRef,Memo)
{
"Cowboy-Cardinal 1 345kV Line" "Branch '31' '38' '1'" "Branch" "AND" "NO" "YES" ""
"Cowboy-Line 345/138kV Transformer" "Branch '35' '31' '1'" "Branch" "AND" "NO" "YES" ""
"Cowboy-Seahawk 1 345kV Line" "Branch '1' '31' '1'" "Branch" "AND" "NO" "YES" ""
"Dolphin-Panther 1 138kV Line" "Branch '32' '29' '1'" "Branch" "AND" "NO" "YES" ""
"Dolphin-Raider 1 138 kV Line" "Branch '29' '41' '1'" "Branch" "AND" "NO" "YES" ""
"Roughrider-Raven 1 69kV Line" "Branch '15' '54' '1'" "Branch" "AND" "NO" "YES" ""
"Roughrider-Raven 2 69kV Line" "Branch '15' '54' '2'" "Branch" "AND" "NO" "YES" ""
"Roughrider-Raven 3 69kV Line" "Branch '15' '54' '3'" "Branch" "AND" "NO" "YES" ""
"Viking-Dolphin 1 345/138 Over 135%" "Branch '28' '29' '1'" "Branch" "AND" "NO" "NO " ""
"Viking-Dolphin 2 345/138 Over 135%" "Branch '28' '29' '2'" "Branch" "AND" "NO" "NO " ""
}
MODELCONDITIONCONDITION (ModelCondition,CondNum,ObjectField,ConditionType,Value,OtherValue,Absolute)
{
"Cowboy-Cardinal 1 345kV Line" 1 "Online" "=" "NO" "" "NO "
"Cowboy-Line 345/138kV Transformer" 1 "Online" "=" "NO" "" "NO "
"Cowboy-Seahawk 1 345kV Line" 1 "Online" "=" "NO" "" "NO "
"Dolphin-Panther 1 138kV Line" 1 "Online" "=" "NO" "" "NO "
"Dolphin-Raider 1 138 kV Line" 1 "Online" "=" "NO" "" "NO "
"Roughrider-Raven 1 69kV Line" 1 "Online" "=" "NO" "" "NO "
"Roughrider-Raven 2 69kV Line" 1 "Online" "=" "NO" "" "NO "
"Roughrider-Raven 3 69kV Line" 1 "Online" "=" "NO" "" "NO "
"Viking-Dolphin 1 345/138 Over 135%" 1 "LineLimitPercent:2" ">" "135" "" "NO "
"Viking-Dolphin 2 345/138 Over 135%" 1 "LineLimitPercent:2" ">" "135" "" "NO "
}

// THE FOLLOWING MODEL FILTERS ARE NEEDED BY THE CONTINGENCY RECORDS WHICH FOLLOW
MODELFILTER (Name,Logic,Memo)

78

{
"OPEN Cowboy G1" "AND" ""
"OPEN Stampeder G1" "OR" ""
"OPEN Viking G1 and G2" "AND" ""
"Roughrider-Raven 1 & 2" "AND" ""
"Roughrider-Raven 2 & 3" "AND" ""
}
MODELFILTERCONDITION (ModelFilter,CondNum,Criteria,Logic)
{
"OPEN Cowboy G1" 1 "Cowboy-Cardinal 1 345kV Line" ""
"OPEN Cowboy G1" 2 "Cowboy-Seahawk 1 345kV Line" ""
"OPEN Cowboy G1" 3 "Cowboy-Line 345/138kV Transformer" ""
"OPEN Stampeder G1" 1 "Roughrider-Raven 1 & 2" ""
"OPEN Stampeder G1" 2 "Roughrider-Raven 2 & 3" ""
"OPEN Viking G1 and G2" 1 "Dolphin-Raider 1 138 kV Line" ""
"OPEN Viking G1 and G2" 2 "Dolphin-Panther 1 138kV Line" ""
"Roughrider-Raven 1 & 2" 1 "Roughrider-Raven 1 69kV Line" ""
"Roughrider-Raven 1 & 2" 2 "Roughrider-Raven 2 69kV Line" ""
"Roughrider-Raven 2 & 3" 1 "Roughrider-Raven 2 69kV Line" ""
"Roughrider-Raven 2 & 3" 2 "Roughrider-Raven 3 69kV Line" ""
}

//--
// THE FOLLOWING SECTION CONTAINS A DESCRIPTION OF THE REMEDIAL ACTION RECORDS.
//--
REMEDIALACTION (Name,Skip,Memo)
{
"Stampeder RAS" "NO " ""
"Cowboy RAS" "NO " ""
"Viking RAS" "NO " ""
"Dolphin-Raider RAS" "NO " ""
"Viking-Dolphin 1 Overload" "NO " ""
"Viking-Dolphin 2 Overload" "NO " ""
}
REMEDIALACTIONELEMENT (RemedialAction,Object,Action,Criteria,CriteriaStatus, TimeDelay, Comment)
{
"Stampeder RAS" "GEN 53 1" "OPEN" "OPEN Stampeder G1" "TOPOLOGYCHECK" 0 ""
"Cowboy RAS" "GEN 31 1" "OPEN" "OPEN Cowboy G1" "TOPOLOGYCHECK" 0 ""
"Viking RAS" "INJECTIONGROUP 'Viking G1 and G2'" "OPEN" "OPEN Viking G1 and G2" "TOPOLOGYCHECK" 0
""
"Dolphin-Raider RAS" "GEN 28 1" "OPEN" "Dolphin-Raider 1 138 kV Line" "TOPOLOGYCHECK" 0 ""
"Viking-Dolphin 1 Overload" "BRANCH 28 29 1" "OPEN" "Viking-Dolphin 1 345/138 Over 135%"
"POSTCHECK" 0 ""
"Viking-Dolphin 2 Overload" "BRANCH 28 29 2" "OPEN" "Viking-Dolphin 2 345/138 Over 135%"
"POSTCHECK" 0 ""
}

//--
// THE FOLLOWING SECTION CONTAINS A DESCRIPTION OF THE CONTINGENCY RECORDS.
//--
CONTINGENCY (Name,Category,Skip,Memo)
{
"L-2_Roughrider-Raven 2&3" "" "NO " ""
"L-2_Roughrider-Raven 1&2" "" "NO " ""
"L_Falcon-PatriotC1" "" "NO " ""
"T_Falcon-TitanC1" "" "NO " ""
"L_Packer-RedskinC1" "" "NO " ""
"L_Raven-RoughriderC2" "" "NO " ""
"L_Raven-RoughriderC3" "" "NO " ""
"L_Raven-RoughriderC1" "" "NO " ""
"T_Roughrider-StampederC1" "" "NO " ""
"T_Packer-BrownC2" "" "NO " ""
"T_Packer-BrownC1" "" "NO " ""
"L_Packer-SteelerC1" "" "NO " ""
"L_Bear-JetC1" "" "NO " ""
"L_Patriot-BomberC1" "" "NO " ""
"L_Bronco-BillC1" "" "NO " ""
"L_49er-BrownC1" "" "NO " ""
"L_Chief-EskimoC1" "" "NO " ""
"L_Cowboy-CardinalC1" "" "NO " ""
"L_Buccaneer-RaiderC1" "" "NO " ""

79

"L_Packer-ColtC1" "" "NO " ""
"L_Lion-TitanC1" "" "NO " ""
"L_Bengal-SteelerC1" "" "NO " ""
"L_Colt-GiantC1" "" "NO " ""
"L_Redskin-EagleC1" "" "NO " ""
"L_Redskin-EagleC2" "" "NO " ""
"L_Bear-ChargerC1" "" "NO " ""
"L_Roughrider-BomberC1" "" "NO " ""
"L_Bear-EskimoC1" "" "NO " ""
"L_Saint-JetC1" "" "NO " ""
"L_Saint-JetC2" "" "NO " ""
"L_Bronco-RedskinC1" "" "NO " ""
"L_Raven-RamC1" "" "NO " ""
"L_Dolphin-RaiderC1" "" "NO " ""
"L_Panther-DolphinC1" "" "NO " ""
"L_Raven-BengalC1" "" "NO " ""
"L_Cowboy-VikingC1" "" "NO " ""
"L_Argonaut-DolphinC1" "" "NO " ""
"L_Buccaneer-PantherC1" "" "NO " ""
"T_Viking-DolphinC2" "" "NO " ""
"T_Lion-CowboyC1" "" "NO " ""
"L_Texan-BillC1" "" "NO " ""
"T_Chief-PantherC1" "" "NO " ""
"T_Viking-DolphinC1" "" "NO " ""
"L_Ram-BillC1" "" "NO " ""
"L_Lion-ArgonautC1" "" "NO " ""
"T_Titan-CardinalC1" "" "NO " ""
"T_Titan-CardinalC2" "" "NO " ""
"L_Titan-BrownC1" "" "NO " ""
"L_Titan-JaguarC1" "" "NO " ""
"T_Bill-RaiderC1" "" "NO " ""
"T_Bill-RaiderC2" "" "NO " ""
"T_Jet-JaguarC1" "" "NO " ""
"L_Jaguar-StampederC1" "" "NO " ""
"L_Jet-RoughriderC1" "" "NO " ""
"L_Texan-ChargerC1" "" "NO " ""
"L_Falcon-GiantC1" "" "NO " ""
"L-2_Dolphin-Panther/Dolphin-Raider" "" "NO " ""
"L_49er-RaiderC1" "" "NO " ""
"T_Seahawk-BrownC1" "" "NO " ""
"L-2_Cowboy-Cardinal\Cowboy-Seahawk" "" "NO " ""
"L_Seahawk-CowboyC1" "" "NO " ""
}
CONTINGENCYELEMENT (Contingency,Object,Action,Criteria,CriteriaStatus,TimeDelay, Comment)
{
"L-2_Roughrider-Raven 2&3" "BRANCH 15 54 2" "OPEN" "" "CHECK" 0 ""
"L-2_Roughrider-Raven 2&3" "BRANCH 15 54 3" "OPEN" "" "CHECK" 0 ""
"L-2_Roughrider-Raven 1&2" "BRANCH 15 54 1" "OPEN" "" "CHECK" 0 ""
"L-2_Roughrider-Raven 1&2" "BRANCH 15 54 2" "OPEN" "" "CHECK" 0 ""
"L_Falcon-PatriotC1" "BRANCH 10 13 1" "OPEN" "" "CHECK" 0 ""
"T_Falcon-TitanC1" "BRANCH 10 39 1" "OPEN" "" "CHECK" 0 ""
"L_Packer-RedskinC1" "BRANCH 12 18 1" "OPEN" "" "CHECK" 0 ""
"L_Raven-RoughriderC2" "BRANCH 15 54 2" "OPEN" "" "CHECK" 0 ""
"L_Raven-RoughriderC3" "BRANCH 15 54 3" "OPEN" "" "CHECK" 0 ""
"L_Raven-RoughriderC1" "BRANCH 15 54 1" "OPEN" "" "CHECK" 0 ""
"T_Roughrider-StampederC1" "BRANCH 54 53 1" "OPEN" "" "CHECK" 0 ""
"T_Packer-BrownC2" "BRANCH 12 40 2" "OPEN" "" "CHECK" 0 ""
"T_Packer-BrownC1" "BRANCH 12 40 1" "OPEN" "" "CHECK" 0 ""
"L_Packer-SteelerC1" "BRANCH 12 27 1" "OPEN" "" "CHECK" 0 ""
"L_Bear-JetC1" "BRANCH 20 48 1" "OPEN" "" "CHECK" 0 ""
"L_Patriot-BomberC1" "BRANCH 13 55 1" "OPEN" "" "CHECK" 0 ""
"L_Bronco-BillC1" "BRANCH 5 44 1" "OPEN" "" "CHECK" 0 ""
"L_49er-BrownC1" "BRANCH 3 40 1" "OPEN" "" "CHECK" 0 ""
"L_Chief-EskimoC1" "BRANCH 33 50 1" "OPEN" "" "CHECK" 0 ""
"L_Cowboy-CardinalC1" "BRANCH 31 38 1" "OPEN" "" "CHECK" 0 ""
"L_Buccaneer-RaiderC1" "BRANCH 30 41 1" "OPEN" "" "CHECK" 0 ""
"L_Packer-ColtC1" "BRANCH 12 17 1" "OPEN" "" "CHECK" 0 ""
"L_Lion-TitanC1" "BRANCH 35 39 1" "OPEN" "" "CHECK" 0 ""
"L_Bengal-SteelerC1" "BRANCH 16 27 1" "OPEN" "" "CHECK" 0 ""
"L_Colt-GiantC1" "BRANCH 17 19 1" "OPEN" "" "CHECK" 0 ""
"L_Redskin-EagleC1" "BRANCH 18 37 1" "OPEN" "" "CHECK" 0 ""

80

"L_Redskin-EagleC2" "BRANCH 18 37 2" "OPEN" "" "CHECK" 0 ""
"L_Bear-ChargerC1" "BRANCH 20 34 1" "OPEN" "" "CHECK" 0 ""
"L_Roughrider-BomberC1" "BRANCH 54 55 1" "OPEN" "" "CHECK" 0 ""
"L_Bear-EskimoC1" "BRANCH 20 50 1" "OPEN" "" "CHECK" 0 ""
"L_Saint-JetC1" "BRANCH 21 48 1" "OPEN" "" "CHECK" 0 ""
"L_Saint-JetC2" "BRANCH 21 48 2" "OPEN" "" "CHECK" 0 ""
"L_Bronco-RedskinC1" "BRANCH 5 18 1" "OPEN" "" "CHECK" 0 ""
"L_Raven-RamC1" "BRANCH 15 24 1" "OPEN" "" "CHECK" 0 ""
"L_Dolphin-RaiderC1" "BRANCH 29 41 1" "OPEN" "" "CHECK" 0 ""
"L_Panther-DolphinC1" "BRANCH 32 29 1" "OPEN" "" "CHECK" 0 ""
"L_Raven-BengalC1" "BRANCH 15 16 1" "OPEN" "" "CHECK" 0 ""
"L_Cowboy-VikingC1" "BRANCH 31 28 1" "OPEN" "" "CHECK" 0 ""
"L_Argonaut-DolphinC1" "BRANCH 56 29 1" "OPEN" "" "CHECK" 0 ""
"L_Buccaneer-PantherC1" "BRANCH 30 32 1" "OPEN" "" "CHECK" 0 ""
"T_Viking-DolphinC2" "BRANCH 28 29 2" "OPEN" "" "CHECK" 0 ""
"T_Lion-CowboyC1" "BRANCH 35 31 1" "OPEN" "" "CHECK" 0 ""
"L_Texan-BillC1" "BRANCH 14 44 1" "OPEN" "" "CHECK" 0 ""
"T_Chief-PantherC1" "BRANCH 33 32 1" "OPEN" "" "CHECK" 0 ""
"T_Viking-DolphinC1" "BRANCH 28 29 1" "OPEN" "" "CHECK" 0 ""
"L_Ram-BillC1" "BRANCH 24 44 1" "OPEN" "" "CHECK" 0 ""
"L_Lion-ArgonautC1" "BRANCH 35 56 1" "OPEN" "" "CHECK" 0 ""
"T_Titan-CardinalC1" "BRANCH 39 38 1" "OPEN" "" "CHECK" 0 ""
"T_Titan-CardinalC2" "BRANCH 39 38 2" "OPEN" "" "CHECK" 0 ""
"L_Titan-BrownC1" "BRANCH 39 40 1" "OPEN" "" "CHECK" 0 ""
"L_Titan-JaguarC1" "BRANCH 39 47 1" "OPEN" "" "CHECK" 0 ""
"T_Bill-RaiderC1" "BRANCH 44 41 1" "OPEN" "" "CHECK" 0 ""
"T_Bill-RaiderC2" "BRANCH 44 41 2" "OPEN" "" "CHECK" 0 ""
"T_Jet-JaguarC1" "BRANCH 48 47 1" "OPEN" "" "CHECK" 0 ""
"L_Jaguar-StampederC1" "BRANCH 47 53 1" "OPEN" "" "CHECK" 0 ""
"L_Jet-RoughriderC1" "BRANCH 48 54 1" "OPEN" "" "CHECK" 0 ""
"L_Texan-ChargerC1" "BRANCH 14 34 1" "OPEN" "" "CHECK" 0 ""
"L_Falcon-GiantC1" "BRANCH 10 19 1" "OPEN" "" "CHECK" 0 ""
"L-2_Dolphin-Panther/Dolphin-Raider" "BRANCH 32 29 1" "OPEN" "" "CHECK" 0 ""
"L-2_Dolphin-Panther/Dolphin-Raider" "BRANCH 29 41 1" "OPEN" "" "CHECK" 0 ""
"L_49er-RaiderC1" "BRANCH 3 41 1" "OPEN" "" "CHECK" 0 ""
"T_Seahawk-BrownC1" "BRANCH 1 40 1" "OPEN" "" "CHECK" 0 ""
"L-2_Cowboy-Cardinal\Cowboy-Seahawk" "BRANCH 31 38 1" "OPEN" "" "CHECK" 0 ""
"L-2_Cowboy-Cardinal\Cowboy-Seahawk" "BRANCH 1 31 1" "OPEN" "" "CHECK" 0 ""
"L_Seahawk-CowboyC1" "BRANCH 1 31 1" "OPEN" "" "CHECK" 0 ""
}

	1 Project Summary
	2 Basic File Format Rules
	2.1 Syntax Rules
	2.1.1 Naming Conventions
	2.1.2 Handling quotes inside of quoted strings

	2.2 Object Type Strings
	2.2.1 Branch Objects (2-terminal AC devices)

	2.3 Specifying an object using a string
	2.3.1 Special Notes To Maintain Compatibility between PowerWorld and EPC Power Flow File format conventions
	2.3.2 Special Note on Branch and LineShunt objects and Multi-Section Lines
	2.3.3 Special Note on Branch objects and Three-Winding Transformers
	1.1.1
	2.3.4 Primary Keys
	2.3.5 Secondary Keys
	2.3.6 Label Identifiers
	2.3.7 Naming Collisions

	2.4 Object Field Definitions
	2.4.1 Branch and MSBranch Fields
	2.4.2 Bus Fields
	2.4.3 Gen Fields
	2.4.4 Load Fields
	2.4.5 Shunt Fields
	2.4.6 Area Fields
	2.4.7 Zone Fields
	2.4.8 Substation Fields
	2.4.9 Injection Group Fields
	2.4.10 Interface Fields
	2.4.11 3WXFormer Fields
	2.4.12 DCTransmissionLine Fields
	2.4.13 LineShunt Fields
	2.4.14 VSCDCLine Fields
	2.4.15 ModelExpression Fields
	2.4.16 VoltageControlGroup Fields
	2.4.17 Model Filter Fields
	2.4.18 Model Condition Fields

	3 Filtering and Device Filtering
	3.1 Filter, Condition (filtering)
	3.2 Nested Filters
	3.3 Device Filtering
	3.4 Specifying a Filter or Device Filter using a string

	4 Script Sections to Set Defaults
	5 Data Record Structures
	5.1 Area (settings for contingency modeling)
	5.2 Bus (settings for contingency modeling)
	5.3 Voltage Control Group (settings for contingency modeling)
	5.4 Shunt (settings for contingency modeling)
	5.5 Gen (settings for contingency modeling)
	5.6 Sim_Solution_Options_Value
	5.7 CTG_Options_Value
	5.7.1 Using Transient Stability Dynamic Models in Steady State Contingency Analysis

	5.8 InjectionGroup and PartPoint
	5.9 ModelExpression
	5.9.1 Lookup Tables
	5.9.2 Functions Available for Expression String

	5.10 ModelCondition and ModelConditionCondition
	5.11 ModelFilter and ModelFilterCondition
	5.11.1 Handling DisableIfTrueInRef for ModelFilterConditions
	5.11.2 Calculated Time Delay of a Model Filter

	1.1
	5.12 Relationships between objects
	5.13 Contingency, ContingencyElement (TSContingency, TSContingencyElement)
	5.13.1 Special Treatment for ContingencyElement Object Field
	5.13.2 Criteria Status
	5.13.3 Calculated Time Delay
	5.13.4 Contingency Actions
	5.13.5 Special InjectionGroup Contingency Action for Generators by Merit Order

	5.14 RemedialAction and RemedialActionElement

	6 Steady State Contingency Analysis with RAS and Stability Models
	7 Transient Stability Contingency Analysis Processing with RAS
	8 Limit Monitoring Settings
	8.1 LimitSet
	8.1.1 Branch and Interface relationship to LimitSet
	8.1.2 Bus relationship to LimitSet

	8.2 Area (settings for limit monitoring)
	8.3 Zone (settings for limit monitoring)
	8.4 Bus (settings for limit monitoring)
	8.5 Branch (settings for limit monitoring)
	8.6 Interface (settings for limit monitoring)
	8.7 CustomMonitor

	9 Final Demonstration
	9.1 Saving a file in this format
	9.2 Loading a file in this Format into PowerWorld Simulator
	9.3 Example file in this format

