

Virtual Synchronous Machine Grid-Forming Inverter Model Specification (REGFM_B1)

Contributors:

Wei Du	Pacific Northwest National Laboratory		
Sebastian Achilles	General Electric		
Deepak Ramasubramanian	Electric Power Research Institute		
Philip Hart	General Electric		
Shruti Rao	General Electric		
Wenzong Wang	Electric Power Research Institute		
Quan Nguyen	Pacific Northwest National Laboratory		
Jinho Kim	Pacific Northwest National Laboratory		
Qian Zhang	Electric Power Research Institute		
Hanchao Liu	General Electric		
Pedro Arsuaga Santos	General Electric		
James Weber	PowerWorld		
Juan Sanchez	General Electric		
Mengxi Chen	General Electric		
Jayapalan Senthil	Siemens PTI		
Pouyan Pourbeik	ower and Energy, Analysis, Consulting		
	and Education (PEACE) PLLC		
Udoka Nwaneto	Pacific Northwest National Laboratory		
Jeff Bloemink	PowerTech Labs		
Song Wang	Portland General Electric		
Doug Tucker	Western Electricity Coordinating Council		
Songzhe Zhu	GridBright		

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 38637. We would also like to acknowledge the Western Electricity Coordinating Council (WECC) Modeling and Validation Subcommittee (MVS) for supporting this model development work.

1 Introduction

This report describes a generic virtual synchronous machine (VSM) grid-forming inverter (GFM) model—REGFM_B1. The initial model specification was proposed by Pacific Northwest National Laboratory (PNNL), General Electric (GE), and Electric Power Research Institute (EPRI). Siemens Gamesa Renewable Energy (SGRE) also provided inputs to the specification. The model specification has been revised multiple times based on the discussions between all the contributors listed in this report. This work was funded by the Universal Interoperability for Grid-Forming Inverters (UNIFI) Consortium.

This generic model is developed to help the utility industry understand the concept of VSM GFMs. The model could be used to represent equipment for long-term planning studies where vendor-specific models are not available. As equipment mature and improve, generic models will be updated to capture the new functionalities of GFMs. It is not intended that these models will always remain representative of all future GFM technologies.

2 VSM GFM Model (REGFM_B1)

The main circuit of a VSM GFM can be represented as a voltage source behind impedance as shown in Figure 1.

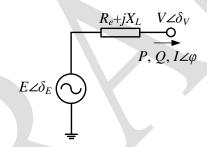


Figure 1 Voltage source representation of a grid-forming inverter

Figure 2 shows the virtual synchronous machine control block. In (1) and (2), P and I_d are per unit values on the system base, and P_{inv} and I_{dinv} are per unit values on the inverter rating base.

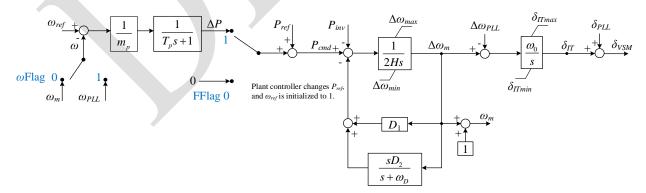
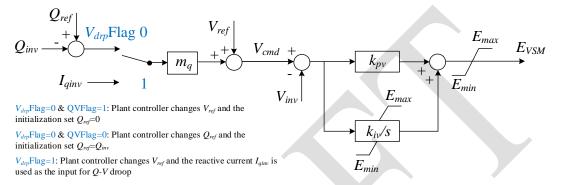


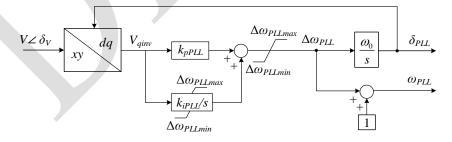
Figure 2 Virtual synchronous machine control

$$P_{inv} = \frac{1}{1 + T_{Pf}s} P \frac{S_{base}}{M_{base}} \tag{1}$$

$$I_{dinv} = \frac{1}{1 + T_{If} s} I_d \frac{S_{base}}{M_{base}}$$
 (2)

Figure 3 shows the voltage control block. In (3) and (5), Q and I_q are per unit values on the system base, and Q_{inv} and I_{qinv} are per unit values on the inverter rating base.




Figure 3 Voltage control

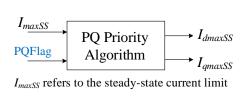
$$Q_{inv} = \frac{1}{1 + T_{Qf}s} Q \frac{S_{base}}{M_{base}}$$
(3)

$$V_{inv} = \frac{1}{1 + T_{Vf}s}V\tag{4}$$

$$I_{qinv} = \frac{1}{1 + T_{lf} s} I_q \frac{S_{base}}{M_{base}}$$
(5)

Figure 4 shows the PLL control block, and the voltages and currents in the dq frame can be calculated using (6)–(9).

Figure 4 PLL block


$$I_d = I_x \cos \delta_{PLL} + I_y \sin \delta_{PLL} \tag{6}$$

$$I_{q} = -I_{x} \sin \delta_{PLL} + I_{y} \cos \delta_{PLL} \tag{7}$$

$$V_d = V_x \cos \delta_{PLL} + V_y \sin \delta_{PLL} \tag{8}$$

$$V_{q} = -V_{x} \sin \delta_{PLL} + V_{y} \cos \delta_{PLL}$$
(9)

The PQ priority algorithm can be used to determine the steady-state active current limit I_{dmaxSS} and reactive current limit I_{qmaxSS} , as shown in Figure 5.

PQ Priority Algorithm			
Q Priority (PQFlag=0)	P Priority (PQFlag=1)		
$I_{q \max SS} = k_f I_{\max SS}$	$I_{d \max SS} = k_f I_{\max SS}$		
$I_{d \max SS} = \sqrt{I_{\max SS}^2 - I_{qinv}^2}$	$I_{q \max SS} = \sqrt{I_{\max SS}^2 - I_{dinv}^2}$		

Figure 5 PQ priority algorithm to determine the steady-state maximum active and reactive currents

The steady-state reactive current I_{qinv} can be limited by reducing the internal voltage magnitude E using the algorithm described in (10) and (11).

$$E_{\min} = \sqrt{(V_{inv} - I_{q \max SS} X_L)^2 + (I_{dinv} X_L)^2}$$

$$E_{\max} = \sqrt{(V_{inv} + I_{q \max SS} X_L)^2 + (I_{dinv} X_L)^2}$$
(10)

$$E_{\text{max}} = \sqrt{(V_{inv} + I_{q \max SS} X_L)^2 + (I_{dinv} X_L)^2}$$
 (11)

The steady-state active current I_{dinv} can be limited by using the control block described in Figure 6. (12) describes how to calculate δ_{max} .

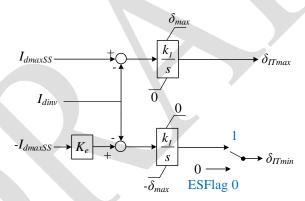


Figure 6 Active current limiting block

$$\delta_{\text{max}} = \sin^{-1}(X_L I_{\text{max SS}}) \tag{12}$$

Equation (13) and Figure 7 describe the transient current limiting function. When the transient current limiting is activated, the output current is limited algebraically by the network solution. Note that I_{maxF} should be set larger than I_{maxSS} .

$$I \angle \varphi = \frac{E_{VSM} \angle \delta_{VSM} - V \angle \delta_{V}}{R_e + jX_L}$$
(13)

$$E_{VSM} \angle \delta_{VSM} \xrightarrow{I < I_{maxF}} E \angle \delta_{E}$$

$$V \angle \delta_{V} + (R_{e} + jX_{L})I_{maxF} \angle \varphi \xrightarrow{I \ge I_{maxF}}$$

Figure 7 Transient current limiting function

Table 1 Model Main Circuit and Controller Parameters

Symbol	Description	Unit	Example Value
ωFlag	A flag to select whether to use the measured frequency	NA	0
ω Flag	from PLL as the input for the P-f droop.	NA	0
V_{drp} Flag	A flag to select whether to use Q or I_q as the input of	NA	0
	the <i>Q-V</i> droop control.	NA.	U
QVFlag	A flag to determine whether Q _{ref} or V _{ref} should be used	NA	1
	to interact with the plant controller.	11/1	1
PQFlag	A flag to determine whether P priority (PQFlag=1) or	NA	0
	Q priority (PQFlag=0) should be selected.	141	Ů,
FFlag	A flag to determine whether the power-frequency	NA	1
	droop is enabled (FFlag=1) or disabled (FFlag=0).	1,11	1
	A flag to determine if the model represents a battery		
ESFlag	source (ESFlag=1) or a non-battery source	NA	1
	(ESFlag=0).		
R_e	Inverter coupling resistance. (0 pu $\leq R_e \leq \frac{1}{4}X_L$)	pu	0
X_L	Inverter coupling reactance. (0.04 pu $\leq X_L \leq 0.4$ pu)	pu	0.1
m	Q - V droop gain. When $V_{drpflag}=1$, m_q represents a per	nu	0.05
m_q	unit virtual impedance.	pu	0.03
k_{pv}	Proportional gain of the voltage controller	pu	0
k_{iv}	Integral gain of the voltage controller	pu/s	5
m_p	<i>P-f</i> droop gain	pu	0.02
$\Delta\omega_{max}$	Upper limit of $\Delta\omega_m$	pu	0.05
$\Delta\omega_{min}$	Lower limit of $\Delta \omega_m$	pu	-0.05
k_{pPLL}	Proportional gain of PLL	pu	0.265
k_{iPLL}	Integral gain of PLL	pu/s	2.65
$\Delta\omega_{PLLmax}$	Upper limit of the PLL output	pu	0.2
$\Delta\omega_{PLLmin}$	Lower limit of the PLL output	pu	-0.2
	Time constant of the low-pass filter in the VSM		
T_p	control block. $(T_p \ge 0)$	S	0
Н	Inertia time constant	S	0.5
D_I	Damping	pu	0
D_2	Transient damping	pu	100
ω_D	Angular frequency of the washout block	pu	50
ImaxSS	Steady-state current limit. ($I_{maxSS} \le 0$ is treated as $1/X_L$)	Pu	
	$(I_{maxSS} \leq 1/X_L)$ $(I_{maxSS} \leq I_{maxF})$	pu	1
	A factor to determine I_{qmax} (PQFlag=0) or I_{dmax}		
k_f	(PQFlag=1). If k_F =0, the software should reset it to be	NA	0.9
	1 and generate a warning message.	1,12	0.9
k_I	Integral gain for the active current limiting loop	pu/s	2.
ImaxF	Transient current limit	pu	1.5
	Time constant of the low-pass filter for active power	pu	
T_{pf}	measurement	S	0.02 s
	Time constant of the low-pass filter for reactive power		
T_{Qf}	measurement	S	0.02 s
	Time constant of the low-pass filter for voltage		
T_{Vf}	measurement	S	0.02 s
T_{If}	Time constant of the low-pass filter for current		
	measurement	S	0.02 s
K_e	Scalar on I_{dmax} for negative active steady-state current	_	
	limitation (0 $<= K_e <= 1.0$)	NA	1
	Rated angular frequency. Software tools typically have		
ω_0	this value specified in the solution environment, so this	rad/s	376.99
~~0	will not be listed as an input parameter of the model	130/5	2,0.,,
	not be instea as an impat parameter of the model	I	

References

Larsen EV, Delmerico RW, inventors; General Electric Co, assignee. Battery energy storage power conditioning system. United States patent US 5,798,633. 1998 Aug 25.

For more information, visit:

sites.google.com/view/unifi-consortium www.energy.gov/eere/solar/unifi-consortium